Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1199448779239889755910 ~2002
1199451083239890216710 ~2002
119945361720870492935912 ~2007
1199525939959620751310 ~2003
1199532371239906474310 ~2002
1199642219239928443910 ~2002
1199824033719894419910 ~2003
1199939183239987836710 ~2002
1199965619239993123910 ~2002
1200061619240012323910 ~2002
1200090959240018191910 ~2002
12001365892880327813711 ~2005
1200139943240027988710 ~2002
1200172019240034403910 ~2002
1200208811960167048910 ~2003
1200242063240048412710 ~2002
1200253139240050627910 ~2002
1200265439240053087910 ~2002
120027547712482864960912 ~2006
1200291023240058204710 ~2002
1200332879240066575910 ~2002
1200333839240066767910 ~2002
1200344231240068846310 ~2002
1200354671240070934310 ~2002
1200424091240084818310 ~2002
Exponent Prime Factor Digits Year
1200438023240087604710 ~2002
1200442571240088514310 ~2002
1200457679240091535910 ~2002
1200483329960386663310 ~2003
1200563951240112790310 ~2002
1200564203240112840710 ~2002
1200594911240118982310 ~2002
1200665051240133010310 ~2002
1200780083240156016710 ~2002
1200789539240157907910 ~2002
1200789983240157996710 ~2002
1200795899240159179910 ~2002
1200816299240163259910 ~2002
12009125771921460123311 ~2004
1200939281720563568710 ~2003
1200961631240192326310 ~2002
1200983261720589956710 ~2003
12010464712161883647911 ~2004
1201093451240218690310 ~2002
1201100891240220178310 ~2002
1201214291240242858310 ~2002
1201343519240268703910 ~2002
1201370531961096424910 ~2003
1201390559240278111910 ~2002
1201403521720842112710 ~2003
Exponent Prime Factor Digits Year
1201464263240292852710 ~2002
1201555403240311080710 ~2002
1201637303240327460710 ~2002
1201662383240332476710 ~2002
1201664903240332980710 ~2002
1201673789961339031310 ~2003
1201698299240339659910 ~2002
1201707131240341426310 ~2002
1201749917721049950310 ~2003
12017584491682461828711 ~2004
1201806251240361250310 ~2002
1201856303240371260710 ~2002
1201875263240375052710 ~2002
1201880857721128514310 ~2003
12019701731923152276911 ~2004
12020116511923218641711 ~2004
1202013053721207831910 ~2003
12020191491682826808711 ~2004
1202028011240405602310 ~2002
1202050691240410138310 ~2002
1202063279240412655910 ~2002
12021181391202118139111 ~2004
12021486972885156872911 ~2005
1202162861961730288910 ~2003
1202197343240439468710 ~2002
Exponent Prime Factor Digits Year
1202270843240454168710 ~2002
1202313683240462736710 ~2002
1202328191240465638310 ~2002
1202328713721397227910 ~2003
1202336783240467356710 ~2002
12023470212645163446311 ~2004
1202384003240476800710 ~2002
1202402423240480484710 ~2002
120248554129581144308712 ~2007
1202549591240509918310 ~2002
1202567039240513407910 ~2002
1202572331240514466310 ~2002
1202595371240519074310 ~2002
1202608811240521762310 ~2002
1202631719962105375310 ~2003
1202677499240535499910 ~2002
1202685251240537050310 ~2002
1202685437721611262310 ~2003
1202750819240550163910 ~2002
1202758283240551656710 ~2002
1202819903240563980710 ~2002
1202934563240586912710 ~2002
1202936519240587303910 ~2002
1203006923240601384710 ~2002
1203013043240602608710 ~2002
Home
4.903.097 digits
e-mail
25-07-08