Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1589924111317984822310 ~2003
1589940899317988179910 ~2003
1589941751317988350310 ~2003
15899912112543985937711 ~2005
1590001079318000215910 ~2003
15900178572544028571311 ~2005
15900609072544097451311 ~2005
1590126221954075732710 ~2004
1590162179318032435910 ~2003
1590184643318036928710 ~2003
1590222059318044411910 ~2003
1590225443318045088710 ~2003
1590264839318052967910 ~2003
1590325091318065018310 ~2003
1590403043318080608710 ~2003
1590405191318081038310 ~2003
1590564617954338770310 ~2004
15906170898589332280711 ~2006
15908368817317849652711 ~2006
1590844943318168988710 ~2003
1590944471318188894310 ~2003
1591081601954648960710 ~2004
1591177079318235415910 ~2003
1591204619318240923910 ~2003
1591239623318247924710 ~2003
Exponent Prime Factor Digits Year
15912898371273031869711 ~2004
1591374371318274874310 ~2003
1591378391318275678310 ~2003
1591379423318275884710 ~2003
1591425971318285194310 ~2003
1591446539318289307910 ~2003
15914471273819473104911 ~2006
1591452911318290582310 ~2003
1591459379318291875910 ~2003
1591524383318304876710 ~2003
1591551779318310355910 ~2003
1591552139318310427910 ~2003
1591632431318326486310 ~2003
1591710311318342062310 ~2003
1591711571318342314310 ~2003
15917172718913616717711 ~2006
15917295711273383656911 ~2004
15918194211273455536911 ~2004
1591850957955110574310 ~2004
1591913159318382631910 ~2003
1591913231318382646310 ~2003
1591934471318386894310 ~2003
1591959851318391970310 ~2003
15919635672547141707311 ~2005
1591990199318398039910 ~2003
Exponent Prime Factor Digits Year
1592011391318402278310 ~2003
1592034599318406919910 ~2003
1592075519318415103910 ~2003
1592147939318429587910 ~2003
1592155633955293379910 ~2004
1592197391318439478310 ~2003
1592322359318464471910 ~2003
1592334899318466979910 ~2003
15923358471273868677711 ~2004
1592366579318473315910 ~2003
1592391803318478360710 ~2003
1592405063318481012710 ~2003
1592440763318488152710 ~2003
1592471483318494296710 ~2003
1592474963318494992710 ~2003
1592496263318499252710 ~2003
1592527571318505514310 ~2003
15925616111592561611111 ~2005
1592727683318545536710 ~2003
1592793239318558647910 ~2003
1592807291318561458310 ~2003
1592808851318561770310 ~2003
1592812633955687579910 ~2004
1592812811318562562310 ~2003
1592889839318577967910 ~2003
Exponent Prime Factor Digits Year
1592906531318581306310 ~2003
15930960912867572963911 ~2005
1593136859318627371910 ~2003
1593154397955892638310 ~2004
15931574091274525927311 ~2004
15931805093823633221711 ~2006
1593216419318643283910 ~2003
15932669472867880504711 ~2005
1593313619318662723910 ~2003
1593317003318663400710 ~2003
1593348193956008915910 ~2004
1593350471318670094310 ~2003
15933563811274685104911 ~2004
1593535093956121055910 ~2004
1593558803318711760710 ~2003
15936007732231041082311 ~2005
1593618431318723686310 ~2003
1593621203318724240710 ~2003
1593682691318736538310 ~2003
1593692363318738472710 ~2003
15937939212550070273711 ~2005
1593852341956311404710 ~2004
1593890891318778178310 ~2003
1593976991318795398310 ~2003
15940670533506947516711 ~2005
Home
4.724.182 digits
e-mail
25-04-13