Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1581908183316381636710 ~2003
158199802712655984216112 ~2007
1582055543316411108710 ~2003
1582070519316414103910 ~2003
1582179719316435943910 ~2003
1582194083316438816710 ~2003
15822233811265778704911 ~2004
1582226279316445255910 ~2003
1582249919316449983910 ~2003
1582259603316451920710 ~2003
1582272803316454560710 ~2003
1582355111316471022310 ~2003
1582442051316488410310 ~2003
1582459633949475779910 ~2004
1582461623316492324710 ~2003
1582529219316505843910 ~2003
1582601831316520366310 ~2003
15826278972532204635311 ~2005
1582661771316532354310 ~2003
1582699523316539904710 ~2003
1582731719316546343910 ~2003
15828411014748523303111 ~2006
15828589433798861463311 ~2005
1582938941949763364710 ~2004
1582976159316595231910 ~2003
Exponent Prime Factor Digits Year
1583013241949807944710 ~2004
1583037551316607510310 ~2003
1583066399316613279910 ~2003
1583121563316624312710 ~2003
1583130911316626182310 ~2003
15831425511266514040911 ~2004
15831532932533045268911 ~2005
1583183363316636672710 ~2003
1583226839316645367910 ~2003
1583237003316647400710 ~2003
1583239991316647998310 ~2003
15833659972216712395911 ~2005
1583367053950020231910 ~2004
1583459231316691846310 ~2003
1583525063316705012710 ~2003
158354136153206989729712 ~2008
1583577839316715567910 ~2003
1583584259316716851910 ~2003
1583605433950163259910 ~2004
1583703239316740647910 ~2003
1583712419316742483910 ~2003
15837453771266996301711 ~2004
15837994791267039583311 ~2004
1583801111316760222310 ~2003
1583880839316776167910 ~2003
Exponent Prime Factor Digits Year
1583957411316791482310 ~2003
1583963483316792696710 ~2003
1583973983316794796710 ~2003
1584064871316812974310 ~2003
15840805992851345078311 ~2005
1584120371316824074310 ~2003
1584129203316825840710 ~2003
1584208511316841702310 ~2003
1584276557950565934310 ~2004
1584292511316858502310 ~2003
1584314339316862867910 ~2003
15843251473802380352911 ~2005
1584360023316872004710 ~2003
1584370813950622487910 ~2004
1584385163316877032710 ~2003
1584391859316878371910 ~2003
1584576971316915394310 ~2003
1584616343316923268710 ~2003
1584650363316930072710 ~2003
1584680171316936034310 ~2003
1584803723316960744710 ~2003
1584822901950893740710 ~2004
1584841451316968290310 ~2003
1584941483316988296710 ~2003
1585090679317018135910 ~2003
Exponent Prime Factor Digits Year
15851021772536163483311 ~2005
1585148759317029751910 ~2003
1585188481951113088710 ~2004
1585246499317049299910 ~2003
1585259519317051903910 ~2003
1585279211317055842310 ~2003
1585353719317070743910 ~2003
1585360391317072078310 ~2003
1585367783317073556710 ~2003
1585419971317083994310 ~2003
1585438741951263244710 ~2004
1585511699317102339910 ~2003
15855843172219818043911 ~2005
1585592831317118566310 ~2003
1585649713951389827910 ~2004
1585855703317171140710 ~2003
1585915139317183027910 ~2003
1585916771317183354310 ~2003
15859439591585943959111 ~2005
15859576875392256135911 ~2006
158599425111419158607312 ~2007
15859956891268796551311 ~2004
1586008691317201738310 ~2003
1586031071317206214310 ~2003
1586050451317210090310 ~2003
Home
4.724.182 digits
e-mail
25-04-13