Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
15677037835016652105711 ~2006
1567767683313553536710 ~2003
1567797773940678663910 ~2004
1567851599313570319910 ~2003
1567943999313588799910 ~2003
1567952003313590400710 ~2003
1568150231313630046310 ~2003
1568153579313630715910 ~2003
15681658032509065284911 ~2005
1568188019313637603910 ~2003
1568224979313644995910 ~2003
1568241359313648271910 ~2003
1568242079313648415910 ~2003
15682666196586719799911 ~2006
15682810511568281051111 ~2005
1568361853941017111910 ~2004
1568421433941052859910 ~2004
15684831591254786527311 ~2004
15685088832509614212911 ~2005
15686110031568611003111 ~2005
15686261091254900887311 ~2004
1568688683313737736710 ~2003
1568733839313746767910 ~2003
15687620592823771706311 ~2005
1568926823313785364710 ~2003
Exponent Prime Factor Digits Year
1568992091313798418310 ~2003
1569049571313809914310 ~2003
1569055679313811135910 ~2003
1569058031313811606310 ~2003
1569077651313815530310 ~2003
1569237359313847471910 ~2003
1569257297941554378310 ~2004
1569330131313866026310 ~2003
1569530351313906070310 ~2003
1569531839313906367910 ~2003
1569637631313927526310 ~2003
1569683341941810004710 ~2004
1569685739313937147910 ~2003
1569710039313942007910 ~2003
1569734123313946824710 ~2003
156984856948979275352912 ~2008
1569876179313975235910 ~2003
15699210471255936837711 ~2004
15699279591255942367311 ~2004
1569969503313993900710 ~2003
15700264993768063597711 ~2005
15700317171256025373711 ~2004
15700364871256029189711 ~2004
1570089071314017814310 ~2003
1570111919314022383910 ~2003
Exponent Prime Factor Digits Year
1570112441942067464710 ~2004
1570134743314026948710 ~2003
15703349811256267984911 ~2004
15703788071570378807111 ~2005
1570394723314078944710 ~2003
1570407911314081582310 ~2003
1570419443314083888710 ~2003
15704208013454925762311 ~2005
1570440251314088050310 ~2003
1570458551314091710310 ~2003
1570501703314100340710 ~2003
1570564631314112926310 ~2003
1570618019314123603910 ~2003
1570634953942380971910 ~2004
1570635791314127158310 ~2003
1570783619314156723910 ~2003
15708834411256706752911 ~2004
1570970123314194024710 ~2003
1570998623314199724710 ~2003
1571036279314207255910 ~2003
1571037001942622200710 ~2004
1571063999314212799910 ~2003
1571115011314223002310 ~2003
1571124911314224982310 ~2003
1571193623314238724710 ~2003
Exponent Prime Factor Digits Year
1571198963314239792710 ~2003
1571215043314243008710 ~2003
1571297303314259460710 ~2003
1571313959314262791910 ~2003
15713343111257067448911 ~2004
1571347031314269406310 ~2003
1571405039314281007910 ~2003
15714217693457127891911 ~2005
1571434811314286962310 ~2003
1571466131314293226310 ~2003
1571473499314294699910 ~2003
15714833271257186661711 ~2004
15715096134714528839111 ~2006
1571568083314313616710 ~2003
1571601413942960847910 ~2004
15716218672828919360711 ~2005
1571655497942993298310 ~2004
15717027291257362183311 ~2004
1571728997943037398310 ~2004
1571813759314362751910 ~2003
1571827391314365478310 ~2003
1571917211314383442310 ~2003
1571940431314388086310 ~2003
15720501133772920271311 ~2005
1572071843314414368710 ~2003
Home
4.724.182 digits
e-mail
25-04-13