Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1190690159238138031910 ~2002
1190694551238138910310 ~2002
1190712023238142404710 ~2002
1190717399952573919310 ~2003
1190740451952592360910 ~2003
1190742743238148548710 ~2002
11907813672143406460711 ~2004
1190827091238165418310 ~2002
1190878343238175668710 ~2002
11909192533572757759111 ~2005
1190939231238187846310 ~2002
1190947871238189574310 ~2002
1191047833714628699910 ~2003
1191070697714642418310 ~2003
1191105491238221098310 ~2002
1191137513714682507910 ~2003
11912058891667688244711 ~2004
1191224159238244831910 ~2002
1191252383238250476710 ~2002
1191256103238251220710 ~2002
1191256151238251230310 ~2002
1191278339238255667910 ~2002
1191308411238261682310 ~2002
1191327383238265476710 ~2002
1191330971238266194310 ~2002
Exponent Prime Factor Digits Year
1191388463238277692710 ~2002
1191421883238284376710 ~2002
1191526079238305215910 ~2002
1191621779238324355910 ~2002
1191629891238325978310 ~2002
119164831947904262423912 ~2008
11916506897626564409711 ~2006
1191657413714994447910 ~2003
1191659159238331831910 ~2002
1191717077715030246310 ~2003
11917258631191725863111 ~2004
1191749411238349882310 ~2002
1191768491238353698310 ~2002
1191783143238356628710 ~2002
1191794183238358836710 ~2002
1191823931238364786310 ~2002
1191863759238372751910 ~2002
1191863903238372780710 ~2002
1191865511238373102310 ~2002
1191941099238388219910 ~2002
1191964199238392839910 ~2002
11920009731668801362311 ~2004
1192017023238403404710 ~2002
1192107869953686295310 ~2003
1192130039238426007910 ~2002
Exponent Prime Factor Digits Year
1192158217715294930310 ~2003
1192178411238435682310 ~2002
1192199471238439894310 ~2002
1192214627953771701710 ~2003
1192241579238448315910 ~2002
1192314041953851232910 ~2003
11923402511192340251111 ~2004
1192353791238470758310 ~2002
1192371611238474322310 ~2002
1192373267953898613710 ~2003
1192376771238475354310 ~2002
1192379579238475915910 ~2002
1192476419238495283910 ~2002
1192481159238496231910 ~2002
1192513391238502678310 ~2002
119254141720988728939312 ~2007
1192558511954046808910 ~2003
1192562771238512554310 ~2002
1192579439954063551310 ~2003
11925907972862217912911 ~2005
1192676399238535279910 ~2002
1192708199238541639910 ~2002
1192913471238582694310 ~2002
1192920479238584095910 ~2002
1192926961715756176710 ~2003
Exponent Prime Factor Digits Year
1192984151238596830310 ~2002
1192988711238597742310 ~2002
1192997303238599460710 ~2002
1193010569954408455310 ~2003
1193017883238603576710 ~2002
1193065103238613020710 ~2002
1193073851238614770310 ~2002
1193127959238625591910 ~2002
11931286272863508704911 ~2005
1193157083238631416710 ~2002
1193189639238637927910 ~2002
1193191451238638290310 ~2002
11932000331909120052911 ~2004
1193244011238648802310 ~2002
1193276507954621205710 ~2003
1193284871238656974310 ~2002
1193364299238672859910 ~2002
1193394793716036875910 ~2003
1193432819238686563910 ~2002
11934396311193439631111 ~2004
1193520239238704047910 ~2002
1193541539238708307910 ~2002
1193542331238708466310 ~2002
1193582543238716508710 ~2002
1193590379238718075910 ~2002
Home
4.903.097 digits
e-mail
25-07-08