Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1512734999302546999910 ~2003
15127558993630614157711 ~2005
15127658112722978459911 ~2005
1512784319302556863910 ~2003
1512786419302557283910 ~2003
1512816911302563382310 ~2003
1512824591302564918310 ~2003
1512851891302570378310 ~2003
1512959543302591908710 ~2003
1513004459302600891910 ~2003
1513049243302609848710 ~2003
15130656411210452512911 ~2004
1513208831302641766310 ~2003
1513232291302646458310 ~2003
1513286003302657200710 ~2003
1513440143302688028710 ~2003
15134526171210762093711 ~2004
1513503791302700758310 ~2003
1513534163302706832710 ~2003
1513572083302714416710 ~2003
1513610531302722106310 ~2003
1513667159302733431910 ~2003
15136784231513678423111 ~2004
1513707971302741594310 ~2003
1513768631302753726310 ~2003
Exponent Prime Factor Digits Year
151382398113018886236712 ~2007
1513832279302766455910 ~2003
1513927013908356207910 ~2004
1513948391302789678310 ~2003
1513997759302799551910 ~2003
1513999043302799808710 ~2003
15140261338478546344911 ~2006
1514141411302828282310 ~2003
1514162939302832587910 ~2003
1514171651302834330310 ~2003
1514248523302849704710 ~2003
1514260739302852147910 ~2003
1514302103302860420710 ~2003
1514337263302867452710 ~2003
1514347223302869444710 ~2003
1514429531302885906310 ~2003
1514459651302891930310 ~2003
1514486591302897318310 ~2003
15144912191514491219111 ~2004
1514491259302898251910 ~2003
15145480011211638400911 ~2004
1514577299302915459910 ~2003
1514577959302915591910 ~2003
1514646599302929319910 ~2003
1514660957908796574310 ~2004
Exponent Prime Factor Digits Year
1514689619302937923910 ~2003
1514703083302940616710 ~2003
1514706023302941204710 ~2003
15147085631514708563111 ~2004
1514773511302954702310 ~2003
1514851043302970208710 ~2003
1514853491302970698310 ~2003
15148745471514874547111 ~2004
1514955839302991167910 ~2003
1514963231302992646310 ~2003
1514985359302997071910 ~2003
1515214691303042938310 ~2003
1515240017909144010310 ~2004
1515424811303084962310 ~2003
1515500711303100142310 ~2003
1515548603303109720710 ~2003
1515562739303112547910 ~2003
1515571133909342679910 ~2004
1515595331303119066310 ~2003
1515599003303119800710 ~2003
1515654971303130994310 ~2003
15156745511515674551111 ~2004
1515701777909421066310 ~2004
1515772631303154526310 ~2003
1515805919303161183910 ~2003
Exponent Prime Factor Digits Year
15158273332122158266311 ~2005
1515886357909531814310 ~2004
1516019951303203990310 ~2003
1516040171303208034310 ~2003
1516141103303228220710 ~2003
15161436973638744872911 ~2005
1516150019303230003910 ~2003
1516154879303230975910 ~2003
1516201523303240304710 ~2003
15162267918794115387911 ~2006
1516283459303256691910 ~2003
1516301117909780670310 ~2004
1516324091303264818310 ~2003
1516334641909800784710 ~2004
1516357523303271504710 ~2003
1516386923303277384710 ~2003
1516468511303293702310 ~2003
1516475483303295096710 ~2003
15164924691213193975311 ~2004
1516582559303316511910 ~2003
1516585403303317080710 ~2003
15165890471516589047111 ~2004
1516602121909961272710 ~2004
1516616399303323279910 ~2003
15166617473639988192911 ~2005
Home
4.724.182 digits
e-mail
25-04-13