Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1680213851336042770310 ~2003
16802337132688373940911 ~2005
1680314423336062884710 ~2003
16803199371008191962311 ~2004
1680371939336074387910 ~2003
1680408371336081674310 ~2003
1680438659336087731910 ~2003
1680521963336104392710 ~2003
16805406133697189348711 ~2006
1680549011336109802310 ~2003
1680619799336123959910 ~2003
16806873911680687391111 ~2005
1680690443336138088710 ~2003
1680727619336145523910 ~2003
16807643691344611495311 ~2005
1680780443336156088710 ~2003
16808391971008503518311 ~2004
16809108834034186119311 ~2006
1680915779336183155910 ~2003
1680915839336183167910 ~2003
1680956939336191387910 ~2003
16809866471680986647111 ~2005
1681033583336206716710 ~2003
1681054283336210856710 ~2003
1681062611336212522310 ~2003
Exponent Prime Factor Digits Year
1681068971336213794310 ~2003
1681137323336227464710 ~2003
16811608611008696516711 ~2004
16811947071344955765711 ~2005
1681222331336244466310 ~2003
1681246499336249299910 ~2003
1681319039336263807910 ~2003
1681391759336278351910 ~2003
1681503671336300734310 ~2003
16815360912690457745711 ~2005
1681711151336342230310 ~2003
16817732574036255816911 ~2006
1681826483336365296710 ~2003
1681866971336373394310 ~2003
1681869023336373804710 ~2003
1681902083336380416710 ~2003
1681922603336384520710 ~2003
1682184923336436984710 ~2003
16822009915383043171311 ~2006
1682291879336458375910 ~2003
1682298419336459683910 ~2003
1682303699336460739910 ~2003
16823051811009383108711 ~2004
1682315711336463142310 ~2003
1682317211336463442310 ~2003
Exponent Prime Factor Digits Year
16823279873028190376711 ~2005
1682335163336467032710 ~2003
1682343359336468671910 ~2003
16823587871682358787111 ~2005
1682367611336473522310 ~2003
16823944371345915549711 ~2005
1682473343336494668710 ~2003
16825101611009506096711 ~2004
1682524691336504938310 ~2003
1682532623336506524710 ~2003
1682639603336527920710 ~2003
16826484531009589071911 ~2004
16826787731009607263911 ~2004
16826800371346144029711 ~2005
16828780272692604843311 ~2005
16828985091346318807311 ~2005
1682933831336586766310 ~2003
1682936483336587296710 ~2003
1682943719336588743910 ~2003
1682965919336593183910 ~2003
16830362635385716041711 ~2006
1683049883336609976710 ~2003
1683193331336638666310 ~2003
1683225179336645035910 ~2003
16832395015049718503111 ~2006
Exponent Prime Factor Digits Year
16833968331010038099911 ~2004
16835191932693630708911 ~2005
1683523871336704774310 ~2003
16835438535050631559111 ~2006
1683547403336709480710 ~2003
1683584219336716843910 ~2003
1683608471336721694310 ~2003
1683646571336729314310 ~2003
1683753059336750611910 ~2003
1683800999336760199910 ~2003
1683817199336763439910 ~2003
168385783111113461684712 ~2007
1683880223336776044710 ~2003
1683894851336778970310 ~2003
1683909203336781840710 ~2003
1683959159336791831910 ~2003
16840497711347239816911 ~2005
1684156319336831263910 ~2003
1684198091336839618310 ~2003
1684310591336862118310 ~2003
16843536471347482917711 ~2005
1684549571336909914310 ~2003
16846456611010787396711 ~2004
16847838731010870323911 ~2004
1684811951336962390310 ~2003
Home
4.724.182 digits
e-mail
25-04-13