Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1509096203301819240710 ~2003
1509118763301823752710 ~2003
15091248791509124879111 ~2004
1509166259301833251910 ~2003
1509168539301833707910 ~2003
1509231539301846307910 ~2003
1509278579301855715910 ~2003
1509295439301859087910 ~2003
1509297203301859440710 ~2003
1509299651301859930310 ~2003
1509313979301862795910 ~2003
1509367043301873408710 ~2003
1509367319301873463910 ~2003
15095185312717133355911 ~2005
1509522061905713236710 ~2004
1509541739301908347910 ~2003
1509599111301919822310 ~2003
1509604619301920923910 ~2003
1509629171301925834310 ~2003
1509671063301934212710 ~2003
1509736297905841778310 ~2004
1509866243301973248710 ~2003
1509901199301980239910 ~2003
1509910823301982164710 ~2003
1509965519301993103910 ~2003
Exponent Prime Factor Digits Year
1510010003302002000710 ~2003
1510022939302004587910 ~2003
15100791433624189943311 ~2005
1510159751302031950310 ~2003
1510254059302050811910 ~2003
1510301951302060390310 ~2003
15103969191208317535311 ~2004
1510433531302086706310 ~2003
15104752071208380165711 ~2004
1510486493906291895910 ~2004
15104923316344067790311 ~2006
1510495223302099044710 ~2003
1510513561906308136710 ~2004
1510525097906315058310 ~2004
1510543337906326002310 ~2004
1510561763302112352710 ~2003
1510622999302124599910 ~2003
15106597391510659739111 ~2004
1510682051302136410310 ~2003
1510723199302144639910 ~2003
1510759091302151818310 ~2003
1510823663302164732710 ~2003
1510922377906553426310 ~2004
1510963739302192747910 ~2003
15110083332417613332911 ~2005
Exponent Prime Factor Digits Year
1511038799302207759910 ~2003
15110508431511050843111 ~2004
15110563991511056399111 ~2004
1511062961906637776710 ~2004
15110844891208867591311 ~2004
1511104631302220926310 ~2003
151112180330222436060112 ~2008
15111543192720077774311 ~2005
1511167271302233454310 ~2003
15111787492115650248711 ~2005
1511189411302237882310 ~2003
15111926091208954087311 ~2004
1511208911302241782310 ~2003
15112121513929151592711 ~2005
15112443411208995472911 ~2004
1511289023302257804710 ~2003
1511298311302259662310 ~2003
1511313757906788254310 ~2004
1511376539302275307910 ~2003
15113864511209109160911 ~2004
1511426699302285339910 ~2003
1511427479302285495910 ~2003
1511431511302286302310 ~2003
1511465531302293106310 ~2003
1511468459302293691910 ~2003
Exponent Prime Factor Digits Year
1511484431302296886310 ~2003
1511574923302314984710 ~2003
15115917892116228504711 ~2005
15116034132418565460911 ~2005
1511644117906986470310 ~2004
1511646293906987775910 ~2004
1511699291302339858310 ~2003
15117039173628089400911 ~2005
15117424393628181853711 ~2005
1511783783302356756710 ~2003
15117974211209437936911 ~2004
1511892383302378476710 ~2003
1512025561907215336710 ~2004
1512058979302411795910 ~2003
1512191339302438267910 ~2003
1512229343302445868710 ~2003
15123372911512337291111 ~2004
1512528359302505671910 ~2003
1512582193907549315910 ~2004
1512583811302516762310 ~2003
1512589703302517940710 ~2003
1512650231302530046310 ~2003
15126920235143152878311 ~2006
15126944993630466797711 ~2005
15127206972420353115311 ~2005
Home
4.724.182 digits
e-mail
25-04-13