Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1243531403248706280710 ~2002
1243588477746153086310 ~2003
1243613411248722682310 ~2002
1243700897994960717710 ~2003
1243722479248744495910 ~2002
1243800839248760167910 ~2002
1243805639248761127910 ~2002
1243808801746285280710 ~2003
1243847051248769410310 ~2002
1243864859248772971910 ~2002
1243886783248777356710 ~2002
1244139899248827979910 ~2002
12442092833234944135911 ~2005
1244275379248855075910 ~2002
1244282339248856467910 ~2002
1244285093746571055910 ~2003
1244304419248860883910 ~2002
1244320667995456533710 ~2003
1244365163248873032710 ~2002
1244374259248874851910 ~2002
1244381641746628984710 ~2003
1244442383248888476710 ~2002
1244571893746743135910 ~2003
12445950911244595091111 ~2004
12446106671244610667111 ~2004
Exponent Prime Factor Digits Year
1244687063248937412710 ~2002
1244734163248946832710 ~2002
1244761781995809424910 ~2003
1244762243248952448710 ~2002
1244803919248960783910 ~2002
1244855303248971060710 ~2002
1244871983248974396710 ~2002
1244885723248977144710 ~2002
1244906111248981222310 ~2002
1244909789995927831310 ~2003
1244912951248982590310 ~2002
1245005819249001163910 ~2002
1245044039249008807910 ~2002
1245054311249010862310 ~2002
1245063251249012650310 ~2002
12450967031245096703111 ~2004
1245123419249024683910 ~2002
1245168311249033662310 ~2002
1245168557996134845710 ~2003
1245195179249039035910 ~2002
12452244291743314200711 ~2004
1245308651249061730310 ~2002
1245332639249066527910 ~2002
1245340919249068183910 ~2002
1245375023249075004710 ~2002
Exponent Prime Factor Digits Year
1245379979249075995910 ~2002
1245395159249079031910 ~2002
12454619472241831504711 ~2004
1245523619249104723910 ~2002
1245544571996435656910 ~2004
1245548377747329026310 ~2003
1245550259249110051910 ~2002
1245568283249113656710 ~2002
1245587159249117431910 ~2002
1245611183249122236710 ~2002
1245627059996501647310 ~2004
1245638099249127619910 ~2002
1245638341747383004710 ~2003
1245649739249129947910 ~2002
12456781272989627504911 ~2005
1245678491249135698310 ~2002
1245700679249140135910 ~2002
1245701519249140303910 ~2002
1245708203249141640710 ~2002
1245771479249154295910 ~2002
1245808391996646712910 ~2004
1245862763249172552710 ~2002
1245898637747539182310 ~2003
1245923747996738997710 ~2004
1245933257996746605710 ~2004
Exponent Prime Factor Digits Year
1245941639249188327910 ~2002
1245959777747575866310 ~2003
1245991979249198395910 ~2002
1245998101747598860710 ~2003
1246031159249206231910 ~2002
12460432912242877923911 ~2004
1246100879249220175910 ~2002
1246162019249232403910 ~2002
1246188011249237602310 ~2002
1246218299249243659910 ~2002
12462315431993970468911 ~2004
1246293731249258746310 ~2002
1246341581747804948710 ~2003
1246412831249282566310 ~2002
1246444883249288976710 ~2002
12465876311994540209711 ~2004
1246676159249335231910 ~2002
1246757591997406072910 ~2004
1246777223249355444710 ~2002
1246833997748100398310 ~2003
1246835279249367055910 ~2002
1246850593748110355910 ~2003
12468647931745610710311 ~2004
1246880879249376175910 ~2002
12469016298728311403111 ~2006
Home
4.724.182 digits
e-mail
25-04-13