Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1308566951261713390310 ~2002
1308619859261723971910 ~2002
1308642539261728507910 ~2002
1308685043261737008710 ~2002
1308783719261756743910 ~2002
1308819983261763996710 ~2002
1308956219261791243910 ~2002
1308989897785393938310 ~2003
1308999959261799991910 ~2002
1309008983261801796710 ~2002
1309079819261815963910 ~2002
1309115891261823178310 ~2002
1309133279261826655910 ~2002
13091399391047311951311 ~2004
13092044712094727153711 ~2004
1309208531261841706310 ~2002
1309214663261842932710 ~2002
1309223843261844768710 ~2002
13093419912094947185711 ~2004
13093818171047505453711 ~2004
1309383671261876734310 ~2002
1309403723261880744710 ~2002
13094276412095084225711 ~2004
1309481531261896306310 ~2002
1309506623261901324710 ~2002
Exponent Prime Factor Digits Year
1309561343261912268710 ~2002
1309570957785742574310 ~2003
13096166115238466444111 ~2005
1309639453785783671910 ~2003
13096472811047717824911 ~2004
13096712472357408244711 ~2005
13097393093143374341711 ~2005
13097839871309783987111 ~2004
1309787651261957530310 ~2002
1309791383261958276710 ~2002
1309830023261966004710 ~2002
13098592791047887423311 ~2004
1309871351261974270310 ~2002
1309921583261984316710 ~2002
1309935911261987182310 ~2002
13099729433405929651911 ~2005
1310007911262001582310 ~2002
1310069879262013975910 ~2002
1310100119262020023910 ~2002
1310107343262021468710 ~2002
13101312711048105016911 ~2004
13101946812882428298311 ~2005
13102035912096325745711 ~2004
13102746171048219693711 ~2004
13103486592358627586311 ~2005
Exponent Prime Factor Digits Year
1310354141786212484710 ~2003
1310409251262081850310 ~2002
1310456933786274159910 ~2003
1310487553786292531910 ~2003
1310532071262106414310 ~2002
1310535119262107023910 ~2002
1310638799262127759910 ~2002
13106942111310694211111 ~2004
1310721011262144202310 ~2002
1310725931262145186310 ~2002
1310737943262147588710 ~2002
1310791523262158304710 ~2002
1310834879262166975910 ~2002
1310837471262167494310 ~2002
1310838143262167628710 ~2002
1310842751262168550310 ~2002
1310857259262171451910 ~2002
1310873831262174766310 ~2002
1310887031262177406310 ~2002
1310996723262199344710 ~2002
1311084431262216886310 ~2002
1311163583262232716710 ~2002
1311163901786698340710 ~2003
1311193931262238786310 ~2002
1311218317786730990310 ~2003
Exponent Prime Factor Digits Year
13112211435244884572111 ~2005
1311263483262252696710 ~2002
1311302171262260434310 ~2002
13113261111049060888911 ~2004
1311405863262281172710 ~2002
13114079173934223751111 ~2005
1311468239262293647910 ~2002
1311470483262294096710 ~2002
1311512231262302446310 ~2002
1311531839262306367910 ~2002
1311535679262307135910 ~2002
13115801773147792424911 ~2005
1311607883262321576710 ~2002
1311612839262322567910 ~2002
1311621719262324343910 ~2002
13116272571049301805711 ~2004
1311676559262335311910 ~2002
1311677771262335554310 ~2002
13116833831311683383111 ~2004
1311712093787027255910 ~2003
13118667719445440751311 ~2006
1311875651262375130310 ~2002
1311947699262389539910 ~2002
1311955091262391018310 ~2002
13119966891049597351311 ~2004
Home
4.724.182 digits
e-mail
25-04-13