Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
100660815712079297884112 ~2006
1006652963201330592710 ~2001
1006659061603995436710 ~2002
1006670363201334072710 ~2001
1006692443201338488710 ~2001
1006697963201339592710 ~2001
1006770839201354167910 ~2001
1006772303201354460710 ~2001
10067849171610855867311 ~2004
10068236834228659468711 ~2005
1006843919201368783910 ~2001
1006871953604123171910 ~2002
1006877777604126666310 ~2002
1006895657805516525710 ~2003
1006990331805592264910 ~2003
1006994819201398963910 ~2001
1007015021604209012710 ~2002
1007016863201403372710 ~2001
1007135483201427096710 ~2001
1007163877604298326310 ~2002
1007165261805732208910 ~2003
1007256119201451223910 ~2001
1007270171201454034310 ~2001
1007271383201454276710 ~2001
10072794791007279479111 ~2003
Exponent Prime Factor Digits Year
1007298683201459736710 ~2001
1007356391201471278310 ~2001
10073584931611773588911 ~2004
1007359901805887920910 ~2003
1007362511201472502310 ~2001
1007369411201473882310 ~2001
10073801391813284250311 ~2004
1007383511201476702310 ~2001
1007399639201479927910 ~2001
1007403359201480671910 ~2001
1007452763201490552710 ~2001
1007456951201491390310 ~2001
1007488571201497714310 ~2001
1007491223201498244710 ~2001
10075299532418071887311 ~2004
1007536811201507362310 ~2001
1007570831201514166310 ~2001
1007573519201514703910 ~2001
1007587799201517559910 ~2001
1007620721604572432710 ~2002
10076680993426071536711 ~2004
10076934175441544451911 ~2005
1007703793604622275910 ~2002
1007717471201543494310 ~2001
1007724131201544826310 ~2001
Exponent Prime Factor Digits Year
1007772371201554474310 ~2001
10078310879876744652711 ~2005
1007848817806279053710 ~2003
1007865577604719346310 ~2002
10078890071007889007111 ~2003
1007890657604734394310 ~2002
10078987511007898751111 ~2003
1007910419201582083910 ~2001
1007917451201583490310 ~2001
1007923753604754251910 ~2002
1007927663201585532710 ~2001
1007942759201588551910 ~2001
1007950637806360509710 ~2003
1007962679806370143310 ~2003
10079733771411162727911 ~2003
1008018911201603782310 ~2001
1008027901604816740710 ~2002
1008069851201613970310 ~2001
1008072431806457944910 ~2003
1008074351201614870310 ~2001
10080979214838870020911 ~2005
1008126863201625372710 ~2001
1008163181604897908710 ~2002
1008198397604919038310 ~2002
1008237551201647510310 ~2001
Exponent Prime Factor Digits Year
1008295859201659171910 ~2001
1008304681604982808710 ~2002
1008335411201667082310 ~2001
1008361643201672328710 ~2001
1008388259201677651910 ~2001
1008429479201685895910 ~2001
1008430751201686150310 ~2001
1008446759201689351910 ~2001
10084771211613563393711 ~2004
1008477923201695584710 ~2001
1008535571201707114310 ~2001
1008588923201717784710 ~2001
1008609083201721816710 ~2001
10086893292219116523911 ~2004
1008707603201741520710 ~2001
1008726827806981461710 ~2003
10087556471008755647111 ~2003
1008756719201751343910 ~2001
1008781859807025487310 ~2003
1008787271201757454310 ~2001
1008794453605276671910 ~2002
1008861641605316984710 ~2002
1008885431201777086310 ~2001
1008898049807118439310 ~2003
1009072523201814504710 ~2001
Home
4.903.097 digits
e-mail
25-07-08