Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
935346121561207672710 ~2002
9353514891309492084711 ~2003
9353786034676893015111 ~2004
935423617561254170310 ~2002
935436011187087202310 ~2001
935445041561267024710 ~2002
9354532975051447803911 ~2005
9354662295986983865711 ~2005
935478671187095734310 ~2001
935482861561289716710 ~2002
9355199471496831915311 ~2003
935527991187105598310 ~2001
935541317748433053710 ~2003
935545811187109162310 ~2001
9355481692245315605711 ~2004
935579999187115999910 ~2001
935587871187117574310 ~2001
935634863187126972710 ~2001
935639063187127812710 ~2001
935647439187129487910 ~2001
935656243935656243110 ~2003
935663657748530925710 ~2003
935668157561400894310 ~2002
9356802531309952354311 ~2003
935681891187136378310 ~2001
Exponent Prime Factor Digits Year
935684021561410412710 ~2002
935707439187141487910 ~2001
935728019187145603910 ~2001
935746061561447636710 ~2002
935748743187149748710 ~2001
935755979187151195910 ~2001
935764631187152926310 ~2001
935805191187161038310 ~2001
935810047935810047110 ~2003
935811497561486898310 ~2002
935827631187165526310 ~2001
935853631935853631110 ~2003
935863301561517980710 ~2002
935868733561521239910 ~2002
935875079187175015910 ~2001
935967463935967463110 ~2003
935968703187193740710 ~2001
935997971187199594310 ~2001
936020951187204190310 ~2001
9360246472246459152911 ~2004
936051983187210396710 ~2001
936057299187211459910 ~2001
9360703572808211071111 ~2004
936080003187216000710 ~2001
936086363187217272710 ~2001
Exponent Prime Factor Digits Year
9360912532246619007311 ~2004
936118499187223699910 ~2001
936135839187227167910 ~2001
936142079187228415910 ~2001
936148523187229704710 ~2001
9361616591685090986311 ~2003
9361630492995721756911 ~2004
936246743187249348710 ~2001
936263591187252718310 ~2001
936309371187261874310 ~2001
936318959187263791910 ~2001
936332591187266518310 ~2001
936383699187276739910 ~2001
936383951187276790310 ~2001
936397571187279514310 ~2001
936459071187291814310 ~2001
936466991187293398310 ~2001
936482357561889414310 ~2002
936513181561907908710 ~2002
936533651187306730310 ~2001
936558923187311784710 ~2001
936586991187317398310 ~2001
936588091936588091110 ~2003
936609901561965940710 ~2002
936632701561979620710 ~2002
Exponent Prime Factor Digits Year
936634943187326988710 ~2001
936649733561989839910 ~2002
936669659187333931910 ~2001
936678419187335683910 ~2001
936680939187336187910 ~2001
936685273562011163910 ~2002
936746339187349267910 ~2001
936768011187353602310 ~2001
936782123187356424710 ~2001
9367935131498869620911 ~2003
936804359749443487310 ~2003
936805273562083163910 ~2002
936822923187364584710 ~2001
936838013562102807910 ~2002
936898561562139136710 ~2002
936919021562151412710 ~2002
936924551749539640910 ~2003
9369544131311736178311 ~2003
936963877562178326310 ~2002
936984731187396946310 ~2001
936993923187398784710 ~2001
937001459187400291910 ~2001
937002239187400447910 ~2001
937007339187401467910 ~2001
937094243187418848710 ~2001
Home
4.724.182 digits
e-mail
25-04-13