Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
10378470794981665979311 ~2005
1037851937830281549710 ~2003
103787856135495446786312 ~2007
10379365871660698539311 ~2004
1037991659207598331910 ~2001
1038038777622823266310 ~2003
1038041099207608219910 ~2001
1038041219207608243910 ~2001
1038045251207609050310 ~2001
10380568792491336509711 ~2004
1038092999207618599910 ~2001
1038123431207624686310 ~2001
1038125161622875096710 ~2003
1038126671830501336910 ~2003
1038143699207628739910 ~2001
1038211151207642230310 ~2001
1038237983207647596710 ~2001
1038254303207650860710 ~2001
1038292499207658499910 ~2001
10384082537476539421711 ~2005
1038476111207695222310 ~2001
1038496463207699292710 ~2001
1038525011207705002310 ~2001
1038614723207722944710 ~2001
1038675311207735062310 ~2001
Exponent Prime Factor Digits Year
1038699659207739931910 ~2001
1038715943207743188710 ~2001
1038716999207743399910 ~2001
10387220116855565272711 ~2005
1038741659207748331910 ~2001
1038750143207750028710 ~2001
1038767111831013688910 ~2003
1038772079207754415910 ~2001
1038823441623294064710 ~2003
1038842351207768470310 ~2001
1038898391207779678310 ~2001
1038905711207781142310 ~2001
1038923423207784684710 ~2001
1038924479207784895910 ~2001
1038930551207786110310 ~2001
1038940403207788080710 ~2001
1038962651207792530310 ~2001
1039028411207805682310 ~2001
1039043543207808708710 ~2001
10391043471870387824711 ~2004
1039166603207833320710 ~2001
1039170131207834026310 ~2001
1039225541831380432910 ~2003
1039229561623537736710 ~2003
1039263503207852700710 ~2001
Exponent Prime Factor Digits Year
1039268017623560810310 ~2003
10393076091455030652711 ~2003
1039379441623627664710 ~2003
1039384799207876959910 ~2001
10393959115820617101711 ~2005
1039450199207890039910 ~2001
1039477739207895547910 ~2001
1039485191831588152910 ~2003
1039490519207898103910 ~2001
1039493879207898775910 ~2001
1039602023207920404710 ~2001
1039612163207922432710 ~2001
1039613459831690767310 ~2003
1039618451207923690310 ~2001
10396395431039639543111 ~2003
1039675961623805576710 ~2003
1039741037623844622310 ~2003
1039742351207948470310 ~2001
1039821059207964211910 ~2001
1039874711207974942310 ~2001
1039893623207978724710 ~2001
1039907279207981455910 ~2001
1039924211207984842310 ~2001
1039924631207984926310 ~2001
1039936151207987230310 ~2001
Exponent Prime Factor Digits Year
10399405571663904891311 ~2004
1039953371207990674310 ~2001
1039969481623981688710 ~2003
1039971143207994228710 ~2001
1039985797623991478310 ~2003
1039999223207999844710 ~2001
10400153092496036741711 ~2004
1040022419208004483910 ~2001
1040027281624016368710 ~2003
1040049119208009823910 ~2001
1040058203208011640710 ~2001
1040070719208014143910 ~2001
1040083721624050232710 ~2003
1040141051208028210310 ~2001
1040206883208041376710 ~2001
1040227619208045523910 ~2001
10402699871040269987111 ~2003
1040273483208054696710 ~2001
1040305439208061087910 ~2001
1040323241624193944710 ~2003
1040379443208075888710 ~2001
1040410223208082044710 ~2001
10404531311664725009711 ~2004
1040460803208092160710 ~2001
1040506451208101290310 ~2001
Home
4.724.182 digits
e-mail
25-04-13