Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
809639783161927956710 ~2001
809677391161935478310 ~2001
809687999161937599910 ~2001
809711879161942375910 ~2001
809734091161946818310 ~2001
809784203161956840710 ~2001
809786759161957351910 ~2001
809788079161957615910 ~2001
809793203161958640710 ~2001
809809439161961887910 ~2001
809809823161961964710 ~2001
809829491161965898310 ~2001
809834611809834611110 ~2002
8098392293887228299311 ~2004
809858039161971607910 ~2001
809863451161972690310 ~2001
809947559161989511910 ~2001
809948177485968906310 ~2002
809961281485976768710 ~2002
809992979161998595910 ~2001
810027059162005411910 ~2001
8100316331296050612911 ~2003
810047519162009503910 ~2001
810049283162009856710 ~2001
810071831162014366310 ~2001
Exponent Prime Factor Digits Year
810160511162032102310 ~2001
810227843162045568710 ~2001
810229397648183517710 ~2002
810249311162049862310 ~2001
810302651162060530310 ~2001
810316079162063215910 ~2001
810318059162063611910 ~2001
810327071162065414310 ~2001
810334991162066998310 ~2001
810382451162076490310 ~2001
810393539162078707910 ~2001
810395711162079142310 ~2001
810402011162080402310 ~2001
810424871162084974310 ~2001
810451451648361160910 ~2002
810494963162098992710 ~2001
810504977648403981710 ~2002
810519001486311400710 ~2002
81056150321560935979912 ~2006
810581963162116392710 ~2001
810597611162119522310 ~2001
810620003162124000710 ~2001
810623483162124696710 ~2001
810628919162125783910 ~2001
810637559162127511910 ~2001
Exponent Prime Factor Digits Year
810734339162146867910 ~2001
810740657486444394310 ~2002
810742703162148540710 ~2001
810745679162149135910 ~2001
810747551162149510310 ~2001
810760283162152056710 ~2001
810792683162158536710 ~2001
810801161648640928910 ~2002
810825791162165158310 ~2001
8108444515351573376711 ~2004
810845531162169106310 ~2001
8108533871946048128911 ~2003
8108583438595098435911 ~2005
810879137486527482310 ~2002
810886319162177263910 ~2001
810914579162182915910 ~2001
810950401486570240710 ~2002
810957263162191452710 ~2001
810976703162195340710 ~2001
810989519162197903910 ~2001
8110070814541639653711 ~2004
811025639162205127910 ~2001
8110308373244123348111 ~2004
811042081486625248710 ~2002
811050041648840032910 ~2002
Exponent Prime Factor Digits Year
811067051162213410310 ~2001
811072259162214451910 ~2001
811072583162214516710 ~2001
811073639162214727910 ~2001
811107683162221536710 ~2001
8111171332433351399111 ~2003
811117943162223588710 ~2001
811123111811123111110 ~2002
811137479162227495910 ~2001
811144199162228839910 ~2001
811152299162230459910 ~2001
811153043162230608710 ~2001
811177637486706582310 ~2002
811201439162240287910 ~2001
811221791162244358310 ~2001
811263899162252779910 ~2001
811298281486778968710 ~2002
811332239162266447910 ~2001
8113493773894477009711 ~2004
811366163162273232710 ~2001
811397759162279551910 ~2001
811401743162280348710 ~2001
8114041571298246651311 ~2003
811404239162280847910 ~2001
811420949649136759310 ~2002
Home
4.903.097 digits
e-mail
25-07-08