Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
813174023162634804710 ~2001
813190991162638198310 ~2001
8131979235855025045711 ~2004
813209429650567543310 ~2002
813240383162648076710 ~2001
813246779162649355910 ~2001
813264143162652828710 ~2001
813345479162669095910 ~2001
813363671162672734310 ~2001
813373283162674656710 ~2001
813380279162676055910 ~2001
813394781650715824910 ~2002
813397813488038687910 ~2002
813397919162679583910 ~2001
813411877488047126310 ~2002
81341196111062402669712 ~2005
813414323162682864710 ~2001
813438643813438643110 ~2002
813476591162695318310 ~2001
813477491162695498310 ~2001
813479063162695812710 ~2001
813490763162698152710 ~2001
813504683162700936710 ~2001
813549563162709912710 ~2001
813564431162712886310 ~2001
Exponent Prime Factor Digits Year
813592751162718550310 ~2001
813624353488174611910 ~2002
813630997488178598310 ~2002
813635261650908208910 ~2002
813668279162733655910 ~2001
813683993488210395910 ~2002
813686339162737267910 ~2001
813693911162738782310 ~2001
8137317291139224420711 ~2003
813765881651012704910 ~2002
813780371162756074310 ~2001
813824413488294647910 ~2002
813847679162769535910 ~2001
813866407813866407110 ~2002
8139054831953373159311 ~2003
813927713488356627910 ~2002
813941279162788255910 ~2001
813968663162793732710 ~2001
813974891162794978310 ~2001
813991751162798350310 ~2001
8139942311302390769711 ~2003
814017053488410231910 ~2002
814024499162804899910 ~2001
814027691162805538310 ~2001
814064171162812834310 ~2001
Exponent Prime Factor Digits Year
814097261651277808910 ~2002
814107191162821438310 ~2001
814127579162825515910 ~2001
814148183162829636710 ~2001
814157651162831530310 ~2001
814159799162831959910 ~2001
8141965871302714539311 ~2003
814221517488532910310 ~2002
8142259632768368274311 ~2004
814230533488538319910 ~2002
814247279162849455910 ~2001
814261379162852275910 ~2001
814263011162852602310 ~2001
814266143162853228710 ~2001
814298921488579352710 ~2002
814320239162864047910 ~2001
814330813488598487910 ~2002
814332721488599632710 ~2002
814338179162867635910 ~2001
814365983162873196710 ~2001
814374553488624731910 ~2002
814402103162880420710 ~2001
814403519162880703910 ~2001
814414501488648700710 ~2002
814475699162895139910 ~2001
Exponent Prime Factor Digits Year
814480643162896128710 ~2001
814481881488689128710 ~2002
814503023162900604710 ~2001
814520797488712478310 ~2002
814520963162904192710 ~2001
814521971162904394310 ~2001
814525919162905183910 ~2001
814539359162907871910 ~2001
8145488931140368450311 ~2003
814607471162921494310 ~2001
814613483162922696710 ~2001
814642019162928403910 ~2001
814645439162929087910 ~2001
814660523162932104710 ~2001
814683179162936635910 ~2001
814706051651764840910 ~2002
814709537488825722310 ~2002
814711379162942275910 ~2001
814718819162943763910 ~2001
814749179162949835910 ~2001
814754939162950987910 ~2001
814761373488856823910 ~2002
814763639162952727910 ~2001
814786601488871960710 ~2002
814802039651841631310 ~2002
Home
4.724.182 digits
e-mail
25-04-13