Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
904627991180925598310 ~2001
9046906371266566891911 ~2003
904692263180938452710 ~2001
904716721542830032710 ~2002
904716781542830068710 ~2002
904718471180943694310 ~2001
904732271180946454310 ~2001
904747631180949526310 ~2001
904793579180958715910 ~2001
904813103180962620710 ~2001
904828601723862880910 ~2002
904832711180966542310 ~2001
904832759180966551910 ~2001
904832893542899735910 ~2002
9048341231447734596911 ~2003
9048757731266826082311 ~2003
904938847904938847110 ~2003
905020393543012235910 ~2002
905039171181007834310 ~2001
905056151181011230310 ~2001
905058851181011770310 ~2001
905061659181012331910 ~2001
905080031181016006310 ~2001
905082383181016476710 ~2001
905109311181021862310 ~2001
Exponent Prime Factor Digits Year
905126363181025272710 ~2001
905137823181027564710 ~2001
905165279181033055910 ~2001
9051951777784678522311 ~2005
905200463181040092710 ~2001
905268193543160915910 ~2002
905273459181054691910 ~2001
905277419181055483910 ~2001
905281439181056287910 ~2001
905293799181058759910 ~2001
905303579181060715910 ~2001
905307503181061500710 ~2001
9053524192897127740911 ~2004
905358299181071659910 ~2001
905455091181091018310 ~2001
905457731724366184910 ~2002
9054618072173108336911 ~2004
905469503181093900710 ~2001
905504101543302460710 ~2002
905547101543328260710 ~2002
905568571905568571110 ~2003
905594771181118954310 ~2001
9056055077969328461711 ~2005
905634923181126984710 ~2001
905636663181127332710 ~2001
Exponent Prime Factor Digits Year
905657561543394536710 ~2002
905732543181146508710 ~2001
905739599181147919910 ~2001
905744699181148939910 ~2001
9058058113804384406311 ~2004
905837351181167470310 ~2001
905890319181178063910 ~2001
905950931181190186310 ~2001
9059788491268370388711 ~2003
905992079181198415910 ~2001
906067559181213511910 ~2001
906099563181219912710 ~2001
906119171181223834310 ~2001
906128963181225792710 ~2001
906143897724915117710 ~2002
906236291181247258310 ~2001
906241079181248215910 ~2001
906290771181258154310 ~2001
906305843181261168710 ~2001
906394037543836422310 ~2002
906404183181280836710 ~2001
906405743181281148710 ~2001
906435191181287038310 ~2001
906451499181290299910 ~2001
906487577543892546310 ~2002
Exponent Prime Factor Digits Year
9065007314351203508911 ~2004
9065317336527028477711 ~2005
906565763181313152710 ~2001
906601439181320287910 ~2001
906609839181321967910 ~2001
906613223181322644710 ~2001
906648059181329611910 ~2001
906664403181332880710 ~2001
906689123181337824710 ~2001
906712643181342528710 ~2001
906743759181348751910 ~2001
906747511906747511110 ~2003
906761363181352272710 ~2001
906800171181360034310 ~2001
9068050214352664100911 ~2004
906811319181362263910 ~2001
906852899181370579910 ~2001
906853319181370663910 ~2001
906881897725505517710 ~2002
906900083181380016710 ~2001
906941603181388320710 ~2001
9069678011451148481711 ~2003
906979691181395938310 ~2001
907023059181404611910 ~2001
907043723181408744710 ~2001
Home
4.724.182 digits
e-mail
25-04-13