Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
10018801511001880151111 ~2003
1001887871200377574310 ~2001
1001896559200379311910 ~2001
1001905451200381090310 ~2001
1001929499200385899910 ~2001
1001930129801544103310 ~2003
1001933111200386622310 ~2001
1001947211200389442310 ~2001
1002013679200402735910 ~2001
1002047639200409527910 ~2001
1002058763200411752710 ~2001
1002059893601235935910 ~2002
1002067361801653888910 ~2003
1002076763200415352710 ~2001
1002110111200422022310 ~2001
1002150899200430179910 ~2001
1002162431200432486310 ~2001
1002174143200434828710 ~2001
1002215099200443019910 ~2001
1002221219200444243910 ~2001
1002233483200446696710 ~2001
1002233891200446778310 ~2001
10022452672605837694311 ~2004
1002272123200454424710 ~2001
1002278603200455720710 ~2001
Exponent Prime Factor Digits Year
1002295559200459111910 ~2001
1002324203200464840710 ~2001
10023355491403269768711 ~2003
1002339179200467835910 ~2001
10023460731403284502311 ~2003
1002548221601528932710 ~2002
1002563543200512708710 ~2001
1002567479200513495910 ~2001
1002591731200518346310 ~2001
1002670301601602180710 ~2002
1002698051200539610310 ~2001
1002723497601634098310 ~2002
10027382411604381185711 ~2004
1002804521601682712710 ~2002
1002833483200566696710 ~2001
10028405831002840583111 ~2003
1002865091200573018310 ~2001
1002884339200576867910 ~2001
1002911771200582354310 ~2001
1002962221601777332710 ~2002
1002967799200593559910 ~2001
10029766072407143856911 ~2004
1002998497601799098310 ~2002
1003018439802414751310 ~2003
10030230591805441506311 ~2004
Exponent Prime Factor Digits Year
1003066931200613386310 ~2001
1003070423200614084710 ~2001
1003091591200618318310 ~2001
10031169293811844330311 ~2004
10031428097824513910311 ~2005
1003150271802520216910 ~2003
1003172699200634539910 ~2001
1003203263200640652710 ~2001
1003203863200640772710 ~2001
1003221361601932816710 ~2002
1003245143200649028710 ~2001
1003245311200649062310 ~2001
1003301471200660294310 ~2001
1003302731200660546310 ~2001
1003338313602002987910 ~2002
1003353359200670671910 ~2001
1003357079200671415910 ~2001
1003360619200672123910 ~2001
1003369403200673880710 ~2001
1003388891200677778310 ~2001
1003410059200682011910 ~2001
1003438979200687795910 ~2001
1003486091200697218310 ~2001
1003505057602103034310 ~2002
1003535303200707060710 ~2001
Exponent Prime Factor Digits Year
1003552691200710538310 ~2001
1003585631200717126310 ~2001
1003657439200731487910 ~2001
1003658483200731696710 ~2001
1003669211200733842310 ~2001
10036873671806637260711 ~2004
1003722431200744486310 ~2001
1003725473602235283910 ~2002
1003805303200761060710 ~2001
1003810739200762147910 ~2001
10038412213011523663111 ~2004
10038455411606152865711 ~2004
1003850447803080357710 ~2003
1003870019200774003910 ~2001
1003878131200775626310 ~2001
10038875411606220065711 ~2004
1003895003200779000710 ~2001
1003895159200779031910 ~2001
1003896251200779250310 ~2001
1003917119200783423910 ~2001
1003956797803165437710 ~2003
1003985231200797046310 ~2001
1004008177602404906310 ~2002
1004051593602430955910 ~2002
1004060303200812060710 ~2001
Home
4.724.182 digits
e-mail
25-04-13