Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
902424749721939799310 ~2002
902435483180487096710 ~2001
902454023180490804710 ~2001
902483297721986637710 ~2002
90249517746749250168712 ~2007
902498543180499708710 ~2001
902508251180501650310 ~2001
902526623180505324710 ~2001
902531137541518682310 ~2002
902548403180509680710 ~2001
902557919180511583910 ~2001
902561903180512380710 ~2001
902615039180523007910 ~2001
902645221541587132710 ~2002
902683751180536750310 ~2001
902703359180540671910 ~2001
902708039180541607910 ~2001
902750603180550120710 ~2001
902769521541661712710 ~2002
902825039180565007910 ~2001
902831543180566308710 ~2001
902833979180566795910 ~2001
902892377541735426310 ~2002
902909699180581939910 ~2001
902913659180582731910 ~2001
Exponent Prime Factor Digits Year
903015791180603158310 ~2001
903031931180606386310 ~2001
9030534911625496283911 ~2003
903071579180614315910 ~2001
903080741541848444710 ~2002
903093083180618616710 ~2001
903096611180619322310 ~2001
903102131180620426310 ~2001
903105251180621050310 ~2001
903130271180626054310 ~2001
903171491180634298310 ~2001
903189971180637994310 ~2001
903219263180643852710 ~2001
903232619180646523910 ~2001
903239063180647812710 ~2001
903242243180648448710 ~2001
903261179180652235910 ~2001
903275533541965319910 ~2002
9033113411445298145711 ~2003
903330353541998211910 ~2002
903335113542001067910 ~2002
903337511180667502310 ~2001
903344831180668966310 ~2001
903352211180670442310 ~2001
9033749099937123999111 ~2005
Exponent Prime Factor Digits Year
903421283180684256710 ~2001
903445019180689003910 ~2001
903467633542080579910 ~2002
903538211180707642310 ~2001
903542999180708599910 ~2001
903601703180720340710 ~2001
903656111180731222310 ~2001
903659279180731855910 ~2001
903662003180732400710 ~2001
903669191180733838310 ~2001
903683699180736739910 ~2001
90370579112471139915912 ~2005
903733703180746740710 ~2001
903741731180748346310 ~2001
903745907722996725710 ~2002
903813923180762784710 ~2001
903813941542288364710 ~2002
903816359180763271910 ~2001
903893101542335860710 ~2002
903901643180780328710 ~2001
903932023903932023110 ~2003
903934439180786887910 ~2001
903985601723188480910 ~2002
904047143180809428710 ~2001
904052531180810506310 ~2001
Exponent Prime Factor Digits Year
9040792511446526801711 ~2003
904122397542473438310 ~2002
904126739180825347910 ~2001
904154963180830992710 ~2001
904204331180840866310 ~2001
904228823180845764710 ~2001
904252631180850526310 ~2001
9042789232351125199911 ~2004
904294031180858806310 ~2001
904304939180860987910 ~2001
904312043180862408710 ~2001
904325797542595478310 ~2002
904344433542606659910 ~2002
904366283180873256710 ~2001
904386299180877259910 ~2001
904387103180877420710 ~2001
904398023180879604710 ~2001
904421513542652907910 ~2002
904468091180893618310 ~2001
904476809723581447310 ~2002
904481639180896327910 ~2001
904494887723595909710 ~2002
904498739180899747910 ~2001
904528043180905608710 ~2001
904608959180921791910 ~2001
Home
4.724.182 digits
e-mail
25-04-13