Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
559354403111870880710 ~1999
559354619111870923910 ~1999
559359803111871960710 ~1999
559373891111874778310 ~1999
559382423111876484710 ~1999
5593854711454402224711 ~2002
559399931111879986310 ~1999
559402583111880516710 ~1999
559422431111884486310 ~1999
559426799111885359910 ~1999
5595087111790427875311 ~2002
559511339111902267910 ~1999
559522703111904540710 ~1999
5595496571678648971111 ~2002
559576943111915388710 ~1999
559643531111928706310 ~1999
559644803111928960710 ~1999
559647839111929567910 ~1999
559667063111933412710 ~1999
559687811111937562310 ~1999
559718503895549604910 ~2002
559723523111944704710 ~1999
559730939111946187910 ~1999
559745639111949127910 ~1999
559768619111953723910 ~1999
Exponent Prime Factor Digits Year
559772351111954470310 ~1999
559776911111955382310 ~1999
559784977335870986310 ~2000
559787533335872519910 ~2000
559799957447839965710 ~2001
559801103111960220710 ~1999
559809703559809703110 ~2001
559813223111962644710 ~1999
559817543111963508710 ~1999
559825433783755606310 ~2001
559834181335900508710 ~2000
559835503559835503110 ~2001
559841231111968246310 ~1999
559846559111969311910 ~1999
559849139447879311310 ~2001
559853243111970648710 ~1999
559854719111970943910 ~1999
559869511559869511110 ~2001
559900823111980164710 ~1999
559901003111980200710 ~1999
559901159111980231910 ~1999
5599047314031314063311 ~2003
559913789447931031310 ~2001
559923659447938927310 ~2001
559924031111984806310 ~1999
Exponent Prime Factor Digits Year
559930667447944533710 ~2001
559934971559934971110 ~2001
559944779111988955910 ~1999
559952639111990527910 ~1999
559973483111994696710 ~1999
559974263111994852710 ~1999
559976843111995368710 ~1999
559983401447986720910 ~2001
559990861335994516710 ~2000
559996919111999383910 ~1999
560025863112005172710 ~1999
560034131112006826310 ~1999
560035643112007128710 ~1999
560037911112007582310 ~1999
560079983112015996710 ~1999
560080583112016116710 ~1999
560082179112016435910 ~1999
560102891112020578310 ~1999
560104991112020998310 ~1999
560108737336065242310 ~2000
560122271448097816910 ~2001
560128463112025692710 ~1999
560141399112028279910 ~1999
560174243112034848710 ~1999
560187923112037584710 ~1999
Exponent Prime Factor Digits Year
5601899573025025767911 ~2003
560198531112039706310 ~1999
560229599112045919910 ~1999
560233139112046627910 ~1999
560277031560277031110 ~2001
560283239112056647910 ~1999
560298983112059796710 ~1999
560334779112066955910 ~1999
560343323112068664710 ~1999
560356679112071335910 ~1999
560357771112071554310 ~1999
5603614192353517959911 ~2003
560385383112077076710 ~1999
5603905497509233356711 ~2004
560391697336235018310 ~2000
560395763112079152710 ~1999
560406299112081259910 ~1999
560446319112089263910 ~1999
5604513711008812467911 ~2002
560452537896724059310 ~2002
560459639112091927910 ~1999
5604635695716728403911 ~2004
560476747560476747110 ~2001
560492351112098470310 ~1999
560494877336296926310 ~2000
Home
4.724.182 digits
e-mail
25-04-13