Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
621201239124240247910 ~2000
621281663124256332710 ~2000
621286819621286819110 ~2001
621310439124262087910 ~2000
621315689497052551310 ~2001
621334859124266971910 ~2000
621392677372835606310 ~2001
621394859124278971910 ~2000
621406649497125319310 ~2001
621417119124283423910 ~2000
621421813372853087910 ~2001
621497603124299520710 ~2000
621506783124301356710 ~2000
621527303124305460710 ~2000
621536557372921934310 ~2001
621553511124310702310 ~2000
621555899124311179910 ~2000
621564137372938482310 ~2001
621570017372942010310 ~2001
6215780931491787423311 ~2002
621578261372946956710 ~2001
621586003621586003110 ~2001
6215949233107974615111 ~2003
621596939124319387910 ~2000
621603491124320698310 ~2000
Exponent Prime Factor Digits Year
621613403124322680710 ~2000
621649601372989760710 ~2001
621672731124334546310 ~2000
621680099124336019910 ~2000
621694511497355608910 ~2001
621729377373037626310 ~2001
621734759124346951910 ~2000
621752639124350527910 ~2000
621755663124351132710 ~2000
6217702671492248640911 ~2002
621799511124359902310 ~2000
621818303124363660710 ~2000
621837791124367558310 ~2000
621878723124375744710 ~2000
621893939124378787910 ~2000
621919691124383938310 ~2000
6219407271617045890311 ~2002
6219513111990244195311 ~2003
621960539124392107910 ~2000
621969143124393828710 ~2000
621988343124397668710 ~2000
622001123124400224710 ~2000
622001183124400236710 ~2000
622009259124401851910 ~2000
622009763124401952710 ~2000
Exponent Prime Factor Digits Year
622023383124404676710 ~2000
622030163124406032710 ~2000
622030691124406138310 ~2000
622042357373225414310 ~2001
622053251124410650310 ~2000
622068263124413652710 ~2000
622070959622070959110 ~2001
622083491124416698310 ~2000
622107133373264279910 ~2001
622117871124423574310 ~2000
622163291124432658310 ~2000
622187543124437508710 ~2000
622205183124441036710 ~2000
622219883124443976710 ~2000
622233851124446770310 ~2000
622237163124447432710 ~2000
622270937497816749710 ~2001
622273979124454795910 ~2000
622277423124455484710 ~2000
622283999124456799910 ~2000
622293239124458647910 ~2000
622331243124466248710 ~2000
622351199124470239910 ~2000
622362431497889944910 ~2001
622371863124474372710 ~2000
Exponent Prime Factor Digits Year
622376231124475246310 ~2000
622392227497913781710 ~2001
622468103124493620710 ~2000
622473083124494616710 ~2000
622478891124495778310 ~2000
622495319124499063910 ~2000
6225083993112541995111 ~2003
622513583124502716710 ~2000
622522343124504468710 ~2000
622547771124509554310 ~2000
622570631124514126310 ~2000
622572359498057887310 ~2001
622584397996135035310 ~2002
622611683124522336710 ~2000
6226205874109295874311 ~2003
622637423124527484710 ~2000
622643783124528756710 ~2000
622669199124533839910 ~2000
622670963124534192710 ~2000
622686959124537391910 ~2000
622725973373635583910 ~2001
622728251124545650310 ~2000
622737371124547474310 ~2000
6227378398967424881711 ~2004
622751303124550260710 ~2000
Home
4.724.182 digits
e-mail
25-04-13