Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
549507527439606021710 ~2001
549512399109902479910 ~1999
549519851109903970310 ~1999
549528877329717326310 ~2000
549538117329722870310 ~2000
549540493329724295910 ~2000
549567311109913462310 ~1999
549581759109916351910 ~1999
549596843109919368710 ~1999
549615179109923035910 ~1999
549640501329784300710 ~2000
549640859109928171910 ~1999
549646931109929386310 ~1999
549647821329788692710 ~2000
549679391109935878310 ~1999
549702971109940594310 ~1999
549707663109941532710 ~1999
549757277329854366310 ~2000
5497749433958379589711 ~2003
549803279109960655910 ~1999
549815401329889240710 ~2000
549819251109963850310 ~1999
549825257329895154310 ~2000
549831311109966262310 ~1999
549878111109975622310 ~1999
Exponent Prime Factor Digits Year
549882457329929474310 ~2000
549896531109979306310 ~1999
549897191109979438310 ~1999
5499151994509304631911 ~2003
5499184871319804368911 ~2002
549940691109988138310 ~1999
549978239109995647910 ~1999
549997979109999595910 ~1999
549998363109999672710 ~1999
550003931110000786310 ~1999
550015811110003162310 ~1999
550035659110007131910 ~1999
5500448572090170456711 ~2002
550048259110009651910 ~1999
550053851110010770310 ~1999
550058291110011658310 ~1999
550064951110012990310 ~1999
550081211110016242310 ~1999
550085423110017084710 ~1999
550087523110017504710 ~1999
550100783110020156710 ~1999
550110371110022074310 ~1999
550115603110023120710 ~1999
5501464492970790824711 ~2003
550185371110037074310 ~1999
Exponent Prime Factor Digits Year
550205063110041012710 ~1999
550243451110048690310 ~1999
550255631110051126310 ~1999
550260331880416529710 ~2001
550262351110052470310 ~1999
550271471110054294310 ~1999
550274723110054944710 ~1999
550275497440220397710 ~2001
550279283110055856710 ~1999
550290271550290271110 ~2001
550294931110058986310 ~1999
550297679110059535910 ~1999
550303079110060615910 ~1999
550320059110064011910 ~1999
550323083110064616710 ~1999
550342679110068535910 ~1999
550361099110072219910 ~1999
550383923110076784710 ~1999
550384223110076844710 ~1999
550414079110082815910 ~1999
550419959110083991910 ~1999
550423403110084680710 ~1999
550424579110084915910 ~1999
550429163110085832710 ~1999
550432763110086552710 ~1999
Exponent Prime Factor Digits Year
550445123110089024710 ~1999
550457429770640400710 ~2001
550463951110092790310 ~1999
550477751110095550310 ~1999
550485209770679292710 ~2001
5504989571321197496911 ~2002
550504583110100916710 ~1999
550507823110101564710 ~1999
550516199110103239910 ~1999
550536359110107271910 ~1999
550540073330324043910 ~2000
550548457330329074310 ~2000
550573559110114711910 ~1999
550574819110114963910 ~1999
550578361330347016710 ~2000
550592111110118422310 ~1999
5505929814735099636711 ~2003
550596911110119382310 ~1999
550599683110119936710 ~1999
550618163110123632710 ~1999
550659617770923463910 ~2001
550677899110135579910 ~1999
550681031110136206310 ~1999
550688111110137622310 ~1999
5506966091652089827111 ~2002
Home
4.903.097 digits
e-mail
25-07-08