Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
689927257413956354310 ~2001
689958383137991676710 ~2000
689991611137998322310 ~2000
6900096671104015467311 ~2002
690014159138002831910 ~2000
690017591138003518310 ~2000
690050363138010072710 ~2000
690060803138012160710 ~2000
690074051138014810310 ~2000
690147553414088531910 ~2001
690153887552123109710 ~2001
690154463138030892710 ~2000
690171539138034307910 ~2000
690197191690197191110 ~2002
690204143138040828710 ~2000
690209519138041903910 ~2000
690216203138043240710 ~2000
6902385131104381620911 ~2002
690239279138047855910 ~2000
690247919138049583910 ~2000
690253043138050608710 ~2000
690267899138053579910 ~2000
690279179138055835910 ~2000
690281437414168862310 ~2001
690329639138065927910 ~2000
Exponent Prime Factor Digits Year
690345983138069196710 ~2000
690360323138072064710 ~2000
690376811138075362310 ~2000
6904016231104642596911 ~2002
690403823138080764710 ~2000
690440501414264300710 ~2001
690461591138092318310 ~2000
690479963138095992710 ~2000
690508961552407168910 ~2001
690547163138109432710 ~2000
690578939138115787910 ~2000
690590399138118079910 ~2000
690610981414366588710 ~2001
690709511138141902310 ~2000
690716639138143327910 ~2000
690727139138145427910 ~2000
690753659138150731910 ~2000
690767939138153587910 ~2000
690790679138158135910 ~2000
690813743138162748710 ~2000
690824171138164834310 ~2000
690826991138165398310 ~2000
690832283138166456710 ~2000
690842917414505750310 ~2001
6908490233868754528911 ~2004
Exponent Prime Factor Digits Year
690850691138170138310 ~2000
690873587552698869710 ~2001
690889091138177818310 ~2000
690907541552726032910 ~2001
690920941414552564710 ~2001
690933563138186712710 ~2000
691029077552823261710 ~2001
691041311138208262310 ~2000
691047241414628344710 ~2001
691058477414635086310 ~2001
69107780911610107191312 ~2005
691082939138216587910 ~2000
691088681552870944910 ~2001
691102739138220547910 ~2000
691107731138221546310 ~2000
691119133414671479910 ~2001
691120799138224159910 ~2000
691121831138224366310 ~2000
691134551552907640910 ~2002
691138241414682944710 ~2001
691186577414711946310 ~2001
691207931138241586310 ~2000
691236863138247372710 ~2000
691241801414745080710 ~2001
691260263138252052710 ~2000
Exponent Prime Factor Digits Year
691309727553047781710 ~2002
691365491553092392910 ~2002
691387379138277475910 ~2000
691392893414835735910 ~2001
691393897414836338310 ~2001
691407851138281570310 ~2000
691424171553139336910 ~2002
691446383138289276710 ~2000
691451759138290351910 ~2000
6914624411106339905711 ~2002
691493483138298696710 ~2000
6915045731106407316911 ~2002
691511603138302320710 ~2000
691562279138312455910 ~2000
691569617414941770310 ~2001
691572641414943584710 ~2001
691573703138314740710 ~2000
691583813414950287910 ~2001
691617539138323507910 ~2000
691618043138323608710 ~2000
691627823138325564710 ~2000
691628183138325636710 ~2000
691629023138325804710 ~2000
691633277414979966310 ~2001
691634711138326942310 ~2000
Home
4.724.182 digits
e-mail
25-04-13