Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
5424203931735745257711 ~2002
542425703108485140710 ~1999
542445671108489134310 ~1999
542474651108494930310 ~1999
542482799108496559910 ~1999
5424850572169940228111 ~2002
542487779108497555910 ~1999
542488763108497752710 ~1999
542489219108497843910 ~1999
542501111108500222310 ~1999
542505791108501158310 ~1999
542514023108502804710 ~1999
542542943108508588710 ~1999
5425480032278701612711 ~2002
542557621325534572710 ~2000
542562593325537555910 ~2000
542577179108515435910 ~1999
542586119108517223910 ~1999
542613671434090936910 ~2001
542613899108522779910 ~1999
542641271434113016910 ~2001
542649071108529814310 ~1999
542666651108533330310 ~1999
542694239434155391310 ~2001
542700731108540146310 ~1999
Exponent Prime Factor Digits Year
542727719108545543910 ~1999
542741819108548363910 ~1999
542744837325646902310 ~2000
542752453868403924910 ~2001
542753219108550643910 ~1999
542758763108551752710 ~1999
542773631108554726310 ~1999
542789543108557908710 ~1999
542798497325679098310 ~2000
542799683108559936710 ~1999
542822047542822047110 ~2001
542825201325695120710 ~2000
542829383108565876710 ~1999
542832911434266328910 ~2001
542837303108567460710 ~1999
542848151108569630310 ~1999
542857793325714675910 ~2000
542861843108572368710 ~1999
542865371108573074310 ~1999
542865971108573194310 ~1999
5428794971302910792911 ~2002
542881967434305573710 ~2001
542890559108578111910 ~1999
542898311108579662310 ~1999
542911253325746751910 ~2000
Exponent Prime Factor Digits Year
542911763108582352710 ~1999
542913181325747908710 ~2000
542929757325757854310 ~2000
542947739108589547910 ~1999
542952803108590560710 ~1999
542953739108590747910 ~1999
542962571108592514310 ~1999
542974739108594947910 ~1999
543016871108603374310 ~1999
543020771108604154310 ~1999
543040529434432423310 ~2001
543040583108608116710 ~1999
543086279108617255910 ~1999
543098483108619696710 ~1999
543137821325882692710 ~2000
543151799108630359910 ~1999
543156023108631204710 ~1999
543161159108632231910 ~1999
543163919108632783910 ~1999
543173933760443506310 ~2001
543182543108636508710 ~1999
543184601434547680910 ~2001
543192623108638524710 ~1999
543196943108639388710 ~1999
543199271108639854310 ~1999
Exponent Prime Factor Digits Year
543211037434568829710 ~2001
543211859108642371910 ~1999
543214739108642947910 ~1999
5432234891195091675911 ~2002
543223799108644759910 ~1999
543227891434582312910 ~2001
543229499108645899910 ~1999
543255659108651131910 ~1999
543266303108653260710 ~1999
543272423108654484710 ~1999
543289633325973779910 ~2000
543294071108658814310 ~1999
543295271108659054310 ~1999
543298439108659687910 ~1999
543304379108660875910 ~1999
543320957325992574310 ~2000
5433706491304089557711 ~2002
543377963108675592710 ~1999
543397583108679516710 ~1999
543398477760757867910 ~2001
543420593326052355910 ~2000
543422681326053608710 ~2000
543425639108685127910 ~1999
543429311108685862310 ~1999
543439243869502788910 ~2001
Home
4.724.182 digits
e-mail
25-04-13