Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
525374231105074846310 ~1999
525382457420305965710 ~2001
525383543105076708710 ~1999
525386573315231943910 ~2000
525387671105077534310 ~1999
525424979105084995910 ~1999
525427453315256471910 ~2000
525431279105086255910 ~1999
525441071105088214310 ~1999
525453431105090686310 ~1999
525455351105091070310 ~1999
525468743105093748710 ~1999
525477893315286735910 ~2000
525478097315286858310 ~2000
525478931105095786310 ~1999
525493517315296110310 ~2000
525525491105105098310 ~1999
525554663105110932710 ~1999
5255678531261362847311 ~2002
525618179105123635910 ~1999
525620833315372499910 ~2000
525628991105125798310 ~1999
525632759105126551910 ~1999
525645671105129134310 ~1999
525656213735918698310 ~2001
Exponent Prime Factor Digits Year
525664081315398448710 ~2000
5256650811682128259311 ~2002
525675803105135160710 ~1999
525687419105137483910 ~1999
525713761315428256710 ~2000
525736901315442140710 ~2000
525740879105148175910 ~1999
525742163105148432710 ~1999
525743051105148610310 ~1999
525748523105149704710 ~1999
525751271420601016910 ~2001
525763163105152632710 ~1999
525765323105153064710 ~1999
525775403105155080710 ~1999
525784067420627253710 ~2001
525787799420630239310 ~2001
525792563105158512710 ~1999
525820019105164003910 ~1999
525834943525834943110 ~2001
525837161420669728910 ~2001
525856403105171280710 ~1999
525859403105171880710 ~1999
525881651105176330310 ~1999
525883079105176615910 ~1999
525901151105180230310 ~1999
Exponent Prime Factor Digits Year
525908711105181742310 ~1999
525912251105182450310 ~1999
525922619105184523910 ~1999
525970337315582202310 ~2000
525994523105198904710 ~1999
526007759105201551910 ~1999
526017911105203582310 ~1999
526019111105203822310 ~1999
526027763105205552710 ~1999
526031879105206375910 ~1999
526033517736446923910 ~2001
526042241315625344710 ~2000
5260512171262522920911 ~2002
526055039105211007910 ~1999
526073413315644047910 ~2000
526079383526079383110 ~2001
526090979105218195910 ~1999
526093391105218678310 ~1999
526195031105239006310 ~1999
526200599105240119910 ~1999
526210703105242140710 ~1999
526253723105250744710 ~1999
526258079105251615910 ~1999
526274123105254824710 ~1999
526283423105256684710 ~1999
Exponent Prime Factor Digits Year
526320517315792310310 ~2000
526322759105264551910 ~1999
526326659105265331910 ~1999
526329959105265991910 ~1999
526362953315817771910 ~2000
526364603105272920710 ~1999
526372271105274454310 ~1999
526379351105275870310 ~1999
526381343105276268710 ~1999
526386719105277343910 ~1999
526414991105282998310 ~1999
526419431105283886310 ~1999
526422503105284500710 ~1999
526446923105289384710 ~1999
526460999105292199910 ~1999
526486739105297347910 ~1999
526487627947677728710 ~2001
526490339105298067910 ~1999
526500239105300047910 ~1999
526507511105301502310 ~1999
526508821315905292710 ~2000
5265417472632708735111 ~2003
526561019105312203910 ~1999
5265817992211643555911 ~2002
526594501315956700710 ~2000
Home
4.724.182 digits
e-mail
25-04-13