Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
526595999105319199910 ~1999
526599179421279343310 ~2001
526610939105322187910 ~1999
5266116291579834887111 ~2002
526614853315968911910 ~2000
5266291391263909933711 ~2002
526651561315990936710 ~2000
526661363105332272710 ~1999
526665071105333014310 ~1999
526678441842685505710 ~2001
526705757316023454310 ~2000
526721483105344296710 ~1999
526738981842782369710 ~2001
526746971105349394310 ~1999
526750379105350075910 ~1999
526752959105350591910 ~1999
526817099105363419910 ~1999
526838113316102867910 ~2000
526839983105367996710 ~1999
526840991105368198310 ~1999
526845577316107346310 ~2000
526849943105369988710 ~1999
526862797316117678310 ~2000
526864033316118419910 ~2000
526864477316118686310 ~2000
Exponent Prime Factor Digits Year
526866239105373247910 ~1999
526870979105374195910 ~1999
526874261316124556710 ~2000
526889183105377836710 ~1999
526920239105384047910 ~1999
526929917421543933710 ~2001
526936231526936231110 ~2001
526936859105387371910 ~1999
526952903105390580710 ~1999
526958339105391667910 ~1999
526966883105393376710 ~1999
526969973316181983910 ~2000
526970159105394031910 ~1999
526982723105396544710 ~1999
526988093316192855910 ~2000
526992701316195620710 ~2000
527052803105410560710 ~1999
5270530013267728606311 ~2003
527077151105415430310 ~1999
527080901316248540710 ~2000
527085983105417196710 ~1999
527087591105417518310 ~1999
527094539105418907910 ~1999
527104871105420974310 ~1999
527115503105423100710 ~1999
Exponent Prime Factor Digits Year
527132041843411265710 ~2001
527137199105427439910 ~1999
527159051105431810310 ~1999
527161499105432299910 ~1999
527181251105436250310 ~1999
527204339105440867910 ~1999
527205083105441016710 ~1999
527209583105441916710 ~1999
527260691105452138310 ~1999
527336819105467363910 ~1999
527340491105468098310 ~1999
527353091105470618310 ~1999
527357063105471412710 ~1999
527375557316425334310 ~2000
527377619105475523910 ~1999
527397863105479572710 ~1999
527420711949357279910 ~2001
527426303105485260710 ~1999
527444117421955293710 ~2001
527470451105494090310 ~1999
527494223105498844710 ~1999
527501201422000960910 ~2001
527503271105500654310 ~1999
527520193316512115910 ~2000
527525951105505190310 ~1999
Exponent Prime Factor Digits Year
527531831105506366310 ~1999
527542583105508516710 ~1999
527559497316535698310 ~2000
527571563105514312710 ~1999
527592011105518402310 ~1999
527594183105518836710 ~1999
527601023105520204710 ~1999
527620433738668606310 ~2001
527641831949755295910 ~2001
527666963105533392710 ~1999
527668061316600836710 ~2000
527673431105534686310 ~1999
527686667949836000710 ~2001
527698511105539702310 ~1999
527704883105540976710 ~1999
527706493844330388910 ~2001
527719259105543851910 ~1999
527724713316634827910 ~2000
527728559105545711910 ~1999
527729801316637880710 ~2000
527739203105547840710 ~1999
527759927422207941710 ~2001
527762171105552434310 ~1999
5277769133272216860711 ~2003
527788259105557651910 ~1999
Home
4.724.182 digits
e-mail
25-04-13