Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
513829523102765904710 ~1999
513834719102766943910 ~1999
513849689411079751310 ~2000
513856319102771263910 ~1999
513879659102775931910 ~1999
513884543102776908710 ~1999
513931871102786374310 ~1999
513948359102789671910 ~1999
513955319411164255310 ~2000
513962651102792530310 ~1999
513969191102793838310 ~1999
5139817193803464720711 ~2003
514006763102801352710 ~1999
514020443102804088710 ~1999
514037159102807431910 ~1999
514038839102807767910 ~1999
514043513308426107910 ~2000
514056071102811214310 ~1999
514057319102811463910 ~1999
514089743102817948710 ~1999
514089817308453890310 ~2000
514110203102822040710 ~1999
514121963102824392710 ~1999
514125167411300133710 ~2000
514125863102825172710 ~1999
Exponent Prime Factor Digits Year
514182191102836438310 ~1999
514190843102838168710 ~1999
514192391102838478310 ~1999
514192571102838514310 ~1999
514194517308516710310 ~2000
514198631102839726310 ~1999
514208291102841658310 ~1999
514225279925605502310 ~2001
514255921308553552710 ~2000
514262351102852470310 ~1999
514266413308559847910 ~2000
514292879102858575910 ~1999
514295219102859043910 ~1999
514339877411471901710 ~2000
514357439102871487910 ~1999
514404083102880816710 ~1999
514433723102886744710 ~1999
514434131102886826310 ~1999
514457843102891568710 ~1999
514468217308680930310 ~2000
514471457308682874310 ~2000
514486859102897371910 ~1999
514531763102906352710 ~1999
514567243514567243110 ~2001
514567463102913492710 ~1999
Exponent Prime Factor Digits Year
514576897308746138310 ~2000
514577177720408047910 ~2001
514593797411675037710 ~2000
514612211102922442310 ~1999
514627693823404308910 ~2001
514639231514639231110 ~2001
514639679102927935910 ~1999
514665419102933083910 ~1999
514693159514693159110 ~2001
514702553720583574310 ~2001
514706453308823871910 ~2000
514708319102941663910 ~1999
514722997308833798310 ~2000
514728323102945664710 ~1999
514742213308845327910 ~2000
514742681308845608710 ~2000
514762043102952408710 ~1999
514771553308862931910 ~2000
514796783102959356710 ~1999
514796999411837599310 ~2000
514811873308887123910 ~2000
514814159102962831910 ~1999
514848979514848979110 ~2001
514851971102970394310 ~1999
5148562314942619817711 ~2003
Exponent Prime Factor Digits Year
514907531102981506310 ~1999
514914143102982828710 ~1999
514921397411937117710 ~2001
514926653308955991910 ~2000
514928411102985682310 ~1999
514951583102990316710 ~1999
514970831102994166310 ~1999
514975091102995018310 ~1999
514976963102995392710 ~1999
514980839102996167910 ~1999
514982579102996515910 ~1999
514993331102998666310 ~1999
515028323103005664710 ~1999
515037647412030117710 ~2001
515037923103007584710 ~1999
515047499103009499910 ~1999
515072543103014508710 ~1999
515090483103018096710 ~1999
515094539103018907910 ~1999
515100023103020004710 ~1999
515106479103021295910 ~1999
515129143824206628910 ~2001
515131961412105568910 ~2001
515132879103026575910 ~1999
515138639103027727910 ~1999
Home
4.724.182 digits
e-mail
25-04-13