Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4053420718106841439 ~1998
4053515038107030079 ~1998
4053538918107077839 ~1998
4053622918107245839 ~1998
405375973891827140710 ~2001
405382577324306061710 ~2000
4053862798107725599 ~1998
405388757243233254310 ~1999
405397451324317960910 ~2000
4054030798108061599 ~1998
405404633243242779910 ~1999
405408737567572231910 ~2000
405409637243245782310 ~1999
4054140598108281199 ~1998
405417217243250330310 ~1999
4054202172189269171911 ~2002
4054328518108657039 ~1998
405455153243273091910 ~1999
4054738918109477839 ~1998
40550653353202457129712 ~2005
4055168518110337039 ~1998
4055230318110460639 ~1998
4055345998110691999 ~1998
4055362918110725839 ~1998
405539501243323700710 ~1999
Exponent Prime Factor Digits Year
4055432638110865279 ~1998
4055677318111354639 ~1998
4055960398111920799 ~1998
405597167324477733710 ~2000
405627449324501959310 ~2000
4056380998112761999 ~1998
405648667973556800910 ~2001
4056501118113002239 ~1998
405653777324523021710 ~2000
4056548638113097279 ~1998
405664997567930995910 ~2000
4056909191379349124711 ~2001
4057146718114293439 ~1998
405717407324573925710 ~2000
4057283218358003412711 ~2003
4057355038114710079 ~1998
4057357798114715599 ~1998
4057415038114830079 ~1998
4057600798115201599 ~1998
4057692118115384239 ~1998
405769307730384752710 ~2001
4057970398115940799 ~1998
4058043598116087199 ~1998
4058058718116117439 ~1998
405809947405809947110 ~2000
Exponent Prime Factor Digits Year
405840619730513114310 ~2001
405841927405841927110 ~2000
4058560438117120879 ~1998
4058577238117154479 ~1998
405861941324689552910 ~2000
4058684398117368799 ~1998
4058687638117375279 ~1998
405889553243533731910 ~1999
4059027718118055439 ~1998
405908719405908719110 ~2000
4059251998118503999 ~1998
4059330238118660479 ~1998
4059465598118931199 ~1998
405975491324780392910 ~2000
406004981243602988710 ~1999
40602202711693434377712 ~2004
406022431730840375910 ~2001
4060336311055687440711 ~2001
4060404838120809679 ~1998
4060492438120984879 ~1998
406057231730903015910 ~2001
4060638118121276239 ~1998
4061027998122055999 ~1998
4061075998122151999 ~1998
4061491438122982879 ~1998
Exponent Prime Factor Digits Year
406150967324920773710 ~2000
4061517838123035679 ~1998
4061609398123218799 ~1998
406162717243697630310 ~1999
4061971318123942639 ~1998
4061982118123964239 ~1998
406209541243725724710 ~1999
406216373243729823910 ~1999
4062172918124345839 ~1998
4062192238124384479 ~1998
406227037243736222310 ~1999
4062288118124576239 ~1998
406249861243749916710 ~1999
4062732718125465439 ~1998
4062776038125552079 ~1998
4062807238125614479 ~1998
4062920398125840799 ~1998
406294201243776520710 ~1999
4063314598126629199 ~1998
4063489198126978399 ~1998
4063508398127016799 ~1998
406350953568891334310 ~2000
4063537438127074879 ~1998
4063686611625474644111 ~2001
4063846918127693839 ~1998
Home
4.724.182 digits
e-mail
25-04-13