Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4093395598186791199 ~1998
4093417438186834879 ~1998
409357393245614435910 ~1999
4093582198187164399 ~1998
4093625998187251999 ~1998
4093912438187824879 ~1998
409403597327522877710 ~2000
4094045471637618188111 ~2001
409404937245642962310 ~1999
409409747327527797710 ~2000
4094205238188410479 ~1998
4094216296878283367311 ~2003
4094279398188558799 ~1998
4094284438188568879 ~1998
4094309518188619039 ~1998
4094340718188681439 ~1998
4094532838189065679 ~1998
409462589573247624710 ~2000
409474553573264374310 ~2000
4094889238189778479 ~1998
409502837245701702310 ~1999
4095103798190207599 ~1998
4095132598190265199 ~1998
4095426718190853439 ~1998
4095685918191371839 ~1998
Exponent Prime Factor Digits Year
409572461245743476710 ~1999
409607477245764486310 ~1999
409611817245767090310 ~1999
4096159918192319839 ~1998
409627051655403281710 ~2000
409636319737345374310 ~2001
4096591631392841154311 ~2001
409676921245806152710 ~1999
4096866598193733199 ~1998
409686821245812092710 ~1999
4096917598193835199 ~1998
409694273245816563910 ~1999
4097073598194147199 ~1998
409709561245825736710 ~1999
4097124838194249679 ~1998
4097135998194271999 ~1998
4097272438194544879 ~1998
409746569327797255310 ~2000
409757837245854702310 ~1999
4097597998195195999 ~1998
4097696638195393279 ~1998
4097765998195531999 ~1998
409780081245868048710 ~1999
4097925118195850239 ~1998
409801237983522968910 ~2001
Exponent Prime Factor Digits Year
4098240718196481439 ~1998
409864061327891248910 ~2000
4098711838197423679 ~1998
4098745798197491599 ~1998
409915477245949286310 ~1999
4099170718198341439 ~1998
4099347118198694239 ~1998
4099398238198796479 ~1998
4099526638199053279 ~1998
4099527238199054479 ~1998
409953979409953979110 ~2000
4099721518199443039 ~1998
4099727331229918199111 ~2001
409988053245992831910 ~1999
410020097246012058310 ~1999
4100221918200443839 ~1998
410024081246014448710 ~1999
4100325838200651679 ~1998
4100440318200880639 ~1998
4100593198201186399 ~1998
410060173246036103910 ~1999
4100883238201766479 ~1998
410094779328075823310 ~2000
4101091318202182639 ~1998
4101176638202353279 ~1998
Exponent Prime Factor Digits Year
4101306598202613199 ~1998
410133137328106509710 ~2000
4101364918202729839 ~1998
4101368271066355750311 ~2001
4101517198203034399 ~1998
410179727984431344910 ~2001
410181647984435952910 ~2001
410182601246109560710 ~1999
4101889918203779839 ~1998
4101957838203915679 ~1998
4102120798204241599 ~1998
4102192798204385599 ~1998
4102470118204940239 ~1998
4102518238205036479 ~1998
4102645798205291599 ~1998
410265553902584216710 ~2001
4102903198205806399 ~1998
410296193574414670310 ~2000
4103031238206062479 ~1998
4103111831641244732111 ~2001
4103179918206359839 ~1998
410328601656525761710 ~2000
41034375115182718787112 ~2004
4103625598207251199 ~1998
4103683191313178620911 ~2001
Home
4.724.182 digits
e-mail
25-04-13