Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4103776318207552639 ~1998
410390623410390623110 ~2000
4103999398207998799 ~1998
410413537656661659310 ~2000
410416841246250104710 ~1999
4104259798208519599 ~1998
410426677246256006310 ~1999
410436619410436619110 ~2000
4104569398209138799 ~1998
410464027985113664910 ~2001
4104686518209373039 ~1998
410473277328378621710 ~2000
4104857398209714799 ~1998
4104858118209716239 ~1998
410487557246292534310 ~1999
4104981118209962239 ~1998
4105071838210143679 ~1998
4105272238210544479 ~1998
4105349518210699039 ~1998
410535959738964726310 ~2001
410540653246324391910 ~1999
410544131328435304910 ~2000
4105488118210976239 ~1998
4105490638210981279 ~1998
410561597246336958310 ~1999
Exponent Prime Factor Digits Year
4105623718211247439 ~1998
410576549328461239310 ~2000
410580697246348418310 ~1999
4105835398211670799 ~1998
4105910398211820799 ~1998
4106075038212150079 ~1998
410630771328504616910 ~2000
410640613657024980910 ~2000
410649047328519237710 ~2000
410667017246400210310 ~1999
4106886118213772239 ~1998
4106950918213901839 ~1998
4106991718213983439 ~1998
4107024718214049439 ~1998
410703947328563157710 ~2000
410705441246423264710 ~1999
4107096838214193679 ~1998
4107121198214242399 ~1998
4107334438214668879 ~1998
4107511632628807443311 ~2002
410755993246453595910 ~1999
4107650518215301039 ~1998
410776111410776111110 ~2000
410776727328621381710 ~2000
410805113246483067910 ~1999
Exponent Prime Factor Digits Year
410817193246490315910 ~1999
4108175518216351039 ~1998
410822213246493327910 ~1999
4108286998216573999 ~1998
4108305718216611439 ~1998
4108326838216653679 ~1998
410833589328666871310 ~2000
4108402318216804639 ~1998
4108405198216810399 ~1998
4108544038217088079 ~1998
4108625038217250079 ~1998
4108681198217362399 ~1998
4108761718217523439 ~1998
410884469575238256710 ~2000
410884961328707968910 ~2000
4108883638217767279 ~1998
4108933198217866399 ~1998
410893573246536143910 ~1999
4109159518218319039 ~1998
4109214718218429439 ~1998
4109341318218682639 ~1998
410937167328749733710 ~2000
4109526838219053679 ~1998
410964329575350060710 ~2000
4109765398219530799 ~1998
Exponent Prime Factor Digits Year
411018781246611268710 ~1999
411018997246611398310 ~1999
4110224398220448799 ~1998
411054737575476631910 ~2000
411079301328863440910 ~2000
4110793671068806354311 ~2001
411085897246651538310 ~1999
411088003411088003110 ~2000
4110972598221945199 ~1998
4111032118222064239 ~1998
4111071598222143199 ~1998
4111101238222202479 ~1998
411128801246677280710 ~1999
4111294438222588879 ~1998
4111438918222877839 ~1998
411151991328921592910 ~2000
411162197575627075910 ~2000
4111634518223269039 ~1998
4111778398223556799 ~1998
4111833238223666479 ~1998
4111876918223753839 ~1998
4111920118223840239 ~1998
4112015518224031039 ~1998
4112054398224108799 ~1998
4112138398224276799 ~1998
Home
4.724.182 digits
e-mail
25-04-13