Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4084345318168690639 ~1998
4084441198168882399 ~1998
4084452838168905679 ~1998
4084515238169030479 ~1998
4084758118169516239 ~1998
408482717245089630310 ~1999
408491597245094958310 ~1999
4085185318170370639 ~1998
4085194318170388639 ~1998
4085196598170393199 ~1998
408523399980456157710 ~2001
4085237518170475039 ~1998
4085329198170658399 ~1998
4085340238170680479 ~1998
4085362918170725839 ~1998
4085567638171135279 ~1998
4085658238171316479 ~1998
4085666638171333279 ~1998
4085764571961166993711 ~2002
4086021718172043439 ~1998
4086179398172358799 ~1998
408626081245175648710 ~1999
408628153245176891910 ~1999
4086528238173056479 ~1998
4086591598173183199 ~1998
Exponent Prime Factor Digits Year
4086640438173280879 ~1998
4086680638173361279 ~1998
4086773038173546079 ~1998
4086793918173587839 ~1998
408718181245230908710 ~1999
4087272838174545679 ~1998
4087332718174665439 ~1998
4087376038174752079 ~1998
4087573798175147599 ~1998
408760399408760399110 ~2000
4087654198175308399 ~1998
4087729798175459599 ~1998
4088016718176033439 ~1998
4088193118176386239 ~1998
4088295431717084080711 ~2001
4088392438176784879 ~1998
4088395918176791839 ~1998
4088565598177131199 ~1998
4088666638177333279 ~1998
408871081245322648710 ~1999
4088863918177727839 ~1998
4088899318177798639 ~1998
4088942038177884079 ~1998
4088949118177898239 ~1998
408896617245337970310 ~1999
Exponent Prime Factor Digits Year
4089136133271308904111 ~2002
4089151918178303839 ~1998
408916709572483392710 ~2000
408921497327137197710 ~2000
4089369598178739199 ~1998
408945401327156320910 ~2000
4089500998179001999 ~1998
4089640918179281839 ~1998
4090137718180275439 ~1998
409016197245409718310 ~1999
4090182718180365439 ~1998
409029791327223832910 ~2000
4090459198180918399 ~1998
4090638718181277439 ~1998
4090800718181601439 ~1998
4090862398181724799 ~1998
4090952998181905999 ~1998
4090959598181919199 ~1998
409098281327278624910 ~2000
409104461245462676710 ~1999
4091102038182204079 ~1998
4091207038182414079 ~1998
4091270518182541039 ~1998
409130837327304669710 ~2000
4091379238182758479 ~1998
Exponent Prime Factor Digits Year
4091380438182760879 ~1998
4091630998183261999 ~1998
409181833245509099910 ~1999
4091824918183649839 ~1998
4091830918183661839 ~1998
4092160011964236804911 ~2002
4092176638184353279 ~1998
409232587654772139310 ~2000
4092337918184675839 ~1998
409234517245540710310 ~1999
409234853245540911910 ~1999
409237001245542200710 ~1999
4092480672619187628911 ~2002
4092505918185011839 ~1998
4092507718185015439 ~1998
4092554398185108799 ~1998
4092689638185379279 ~1998
4092770518185541039 ~1998
4092973918185947839 ~1998
4093008838186017679 ~1998
4093035471064189222311 ~2001
4093145998186291999 ~1998
4093176598186353199 ~1998
409330253573062354310 ~2000
4093371718186743439 ~1998
Home
4.724.182 digits
e-mail
25-04-13