Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4074990838149981679 ~1998
4075123318150246639 ~1998
4075130038150260079 ~1998
407513759733524766310 ~2001
4075222438150444879 ~1998
407523629326018903310 ~2000
407524829326019863310 ~2000
407551073244530643910 ~1999
407559799407559799110 ~2000
407570161652112257710 ~2000
407598151733676671910 ~2001
4075983718151967439 ~1998
407603501326082800910 ~2000
407611079326088863310 ~2000
407630761244578456710 ~1999
407642707407642707110 ~2000
4076554918153109839 ~1998
407655509326124407310 ~2000
407670301244602180710 ~1999
4076720038153440079 ~1998
407685101244611060710 ~1999
4077060118154120239 ~1998
4077097798154195599 ~1998
4077141718154283439 ~1998
4077261838154523679 ~1998
Exponent Prime Factor Digits Year
4077281038154562079 ~1998
4077283198154566399 ~1998
4077403798154807599 ~1998
4077550918155101839 ~1998
4077607798155215599 ~1998
407766001244659600710 ~1999
4077704398155408799 ~1998
407773699407773699110 ~2000
407781313244668787910 ~1999
407796029570914440710 ~2000
407810201326248160910 ~2000
4078426918156853839 ~1998
4078533598157067199 ~1998
407854411407854411110 ~2000
4078741798157483599 ~1998
407874329326299463310 ~2000
4078851718157703439 ~1998
407888807326311045710 ~2000
4079002198158004399 ~1998
407901401244740840710 ~1999
4079035631386872114311 ~2001
407910403978984967310 ~2001
4079170438158340879 ~1998
4079245918158491839 ~1998
407928559407928559110 ~2000
Exponent Prime Factor Digits Year
4079386918158773839 ~1998
4079480638158961279 ~1998
407957311407957311110 ~2000
4079688118159376239 ~1998
4079772598159545199 ~1998
4079833798159667599 ~1998
4080311638160623279 ~1998
4080340798160681599 ~1998
4080394798160789599 ~1998
408054061244832436710 ~1999
4080553918161107839 ~1998
4080559198161118399 ~1998
408070357244842214310 ~1999
408077441244846464710 ~1999
408079673571311542310 ~2000
4080848518161697039 ~1998
4080858238161716479 ~1998
4080925798161851599 ~1998
408108901244865340710 ~1999
4081100518162201039 ~1998
4081678918163357839 ~1998
4081734831306155145711 ~2001
4081790398163580799 ~1998
4081816438163632879 ~1998
4081978798163957599 ~1998
Exponent Prime Factor Digits Year
4082114398164228799 ~1998
4082375518164751039 ~1998
4082534518165069039 ~1998
4082714038165428079 ~1998
4082725318165450639 ~1998
408280967326624773710 ~2000
408303121244981872710 ~1999
4083181918166363839 ~1998
408333113244999867910 ~1999
4083338998166677999 ~1998
408346553245007931910 ~1999
4083470398166940799 ~1998
408353047408353047110 ~2000
4083548518167097039 ~1998
4083643318167286639 ~1998
4083680638167361279 ~1998
4083752398167504799 ~1998
4083800411225140123111 ~2001
4083926891633570756111 ~2001
408394121245036472710 ~1999
408401027980162464910 ~2001
408408941326727152910 ~2000
408413129326730503310 ~2000
4084279318168558639 ~1998
4084282318168564639 ~1998
Home
4.724.182 digits
e-mail
25-04-13