Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4063931398127862799 ~1998
4064005318128010639 ~1998
4064088118128176239 ~1998
4064128438128256879 ~1998
4064237398128474799 ~1998
4064279998128559999 ~1998
4064374318128748639 ~1998
406440149569016208710 ~2000
406446511731603719910 ~2001
406447469325157975310 ~2000
406456573243873943910 ~1999
4064620198129240399 ~1998
406462577243877546310 ~1999
4064716198129432399 ~1998
4065010798130021599 ~1998
406509073975621775310 ~2001
4065169318130338639 ~1998
4065234238130468479 ~1998
4065268198130536399 ~1998
406546433243927859910 ~1999
406571021243942612710 ~1999
406586611406586611110 ~2000
4065973438131946879 ~1998
4066062238132124479 ~1998
4066110118132220239 ~1998
Exponent Prime Factor Digits Year
406611377325289101710 ~2000
4066152718132305439 ~1998
4066300571870498262311 ~2002
4066351611301232515311 ~2001
4066511038133022079 ~1998
4066857118133714239 ~1998
4066885318133770639 ~1998
4066901398133802799 ~1998
4066911118133822239 ~1998
4067189518134379039 ~1998
4067200918134401839 ~1998
406720141244032084710 ~1999
4067202118134404239 ~1998
406725961244035576710 ~1999
4067444518134889039 ~1998
4067531998135063999 ~1998
4067660998135321999 ~1998
4067670718135341439 ~1998
4067825038135650079 ~1998
4067957518135915039 ~1998
406806661244083996710 ~1999
4068315598136631199 ~1998
4068329038136658079 ~1998
406842673244105603910 ~1999
406861843406861843110 ~2000
Exponent Prime Factor Digits Year
4068710398137420799 ~1998
406900183651040292910 ~2000
406902019976564845710 ~2001
4069085811302107459311 ~2001
4069101838138203679 ~1998
4069265638138531279 ~1998
4069274038138548079 ~1998
406940819325552655310 ~2000
4069496398138992799 ~1998
4069530594232311813711 ~2002
4069701838139403679 ~1998
4069837198139674399 ~1998
406994993976787983310 ~2001
4070026918140053839 ~1998
407007121244204272710 ~1999
4070165038140330079 ~1998
4070207398140414799 ~1998
4070399398140798799 ~1998
4070538411221161523111 ~2001
4070563798141127599 ~1998
407073691407073691110 ~2000
407103343977048023310 ~2001
407110019977064045710 ~2001
4071151798142303599 ~1998
4071247198142494399 ~1998
Exponent Prime Factor Digits Year
4071352798142705599 ~1998
4071364798142729599 ~1998
4071678118143356239 ~1998
4071773398143546799 ~1998
4071946318143892639 ~1998
4072049398144098799 ~1998
4072729918145459839 ~1998
407292581244375548710 ~1999
407312621244387572710 ~1999
4073128318146256639 ~1998
4073144038146288079 ~1998
4073342998146685999 ~1998
4073357638146715279 ~1998
407337569325870055310 ~2000
4073435398146870799 ~1998
4073447398146894799 ~1998
4073559838147119679 ~1998
4073651638147303279 ~1998
4073900518147801039 ~1998
4074477598148955199 ~1998
4074770998149541999 ~1998
4074833398149666799 ~1998
4074957238149914479 ~1998
407496029325996823310 ~2000
4074987718149975439 ~1998
Home
4.724.182 digits
e-mail
25-04-13