Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4043810398087620799 ~1998
4043876038087752079 ~1998
4043981038087962079 ~1998
404407877242644726310 ~1999
4044101518088203039 ~1998
4044121992345590754311 ~2002
4044153118088306239 ~1998
404418947323535157710 ~2000
4044357238088714479 ~1998
4044359038088718079 ~1998
404444021242666412710 ~1999
4044496918088993839 ~1998
4044506398089012799 ~1998
4044830638089661279 ~1998
404484551323587640910 ~2000
4044962998089925999 ~1998
4045045918090091839 ~1998
4045355038090710079 ~1998
404535917323628733710 ~2000
4045458718090917439 ~1998
4045486918090973839 ~1998
4045529038091058079 ~1998
4045552198091104399 ~1998
4045571998091143999 ~1998
4045582438091164879 ~1998
Exponent Prime Factor Digits Year
4045599238091198479 ~1998
404585231728253415910 ~2001
404600657242760394310 ~1999
4046074918092149839 ~1998
4046247238092494479 ~1998
4046274238092548479 ~1998
4046318038092636079 ~1998
4046437492913434992911 ~2002
4046467798092935599 ~1998
404650483647440772910 ~2000
4046513638093027279 ~1998
4046608211942371940911 ~2002
4046895838093791679 ~1998
4046929438093858879 ~1998
4046943598093887199 ~1998
4047003118094006239 ~1998
4047109198094218399 ~1998
404732401242839440710 ~1999
4047345598094691199 ~1998
404738813566634338310 ~2000
404741153242844691910 ~1999
404750713242850427910 ~1999
404752717242851630310 ~1999
4047736798095473599 ~1998
404774753971459407310 ~2001
Exponent Prime Factor Digits Year
4047817438095634879 ~1998
4047890398095780799 ~1998
4047977518095955039 ~1998
404799917323839933710 ~2000
4048055398096110799 ~1998
4048060438096120879 ~1998
4048154038096308079 ~1998
4048424398096848799 ~1998
4048507798097015599 ~1998
4048677838097355679 ~1998
4048813918097627839 ~1998
4049004238098008479 ~1998
404920409971808981710 ~2001
404922361242953416710 ~1999
4049384638098769279 ~1998
4049607718099215439 ~1998
4049619718099239439 ~1998
4049620013158703607911 ~2002
404973973242984383910 ~1999
4049827318099654639 ~1998
4049921518099843039 ~1998
405000397243000238310 ~1999
405002393243001435910 ~1999
4050056518100113039 ~1998
4050118918100237839 ~1998
Exponent Prime Factor Digits Year
4050228238100456479 ~1998
4050293638100587279 ~1998
4050597838101195679 ~1998
405072961243043776710 ~1999
4050789598101579199 ~1998
405089411729160939910 ~2001
4050999838101999679 ~1998
4051142998102285999 ~1998
4051336918102673839 ~1998
405135173243081103910 ~1999
405138953243083371910 ~1999
4051495798102991599 ~1998
405166037324132829710 ~2000
405205477243123286310 ~1999
405223439324178751310 ~2000
405247933243148759910 ~1999
405248693243149215910 ~1999
405250673243150403910 ~1999
4052723638105447279 ~1998
4052726638105453279 ~1998
4052897518105795039 ~1998
405296791405296791110 ~2000
405299803405299803110 ~2000
4053059638106119279 ~1998
4053155638106311279 ~1998
Home
4.724.182 digits
e-mail
25-04-13