Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2659307995318615999 ~1997
2659351795318703599 ~1997
2659559515319119039 ~1997
2659700515319401039 ~1997
265977809372368932710 ~1999
2659797115319594239 ~1997
2659844515319689039 ~1997
2659939915319879839 ~1997
2660076115320152239 ~1997
2660138995320277999 ~1997
2660141635320283279 ~1997
2660154115320308239 ~1997
266016871266016871110 ~1999
2660271715320543439 ~1997
2660285995320571999 ~1997
2660318035320636079 ~1997
2660355595320711199 ~1997
2660401435320802879 ~1997
2660419915320839839 ~1997
2660497671489878695311 ~2000
2660500195321000399 ~1997
2660590915321181839 ~1997
266062267425699627310 ~1999
2660637715321275439 ~1997
2660641315321282639 ~1997
Exponent Prime Factor Digits Year
266065013159639007910 ~1998
2660655115321310239 ~1997
266071733372500426310 ~1999
2660723515321447039 ~1997
2660743315321486639 ~1997
2660761195321522399 ~1997
266078201159646920710 ~1998
266091521212873216910 ~1998
2660935195321870399 ~1997
2660937715321875439 ~1997
266107229212885783310 ~1998
2661228235322456479 ~1997
2661249835322499679 ~1997
2661294595322589199 ~1997
266129783691937435910 ~2000
2661336115322672239 ~1997
2661362035322724079 ~1997
2661378715322757439 ~1997
2661585674098841931911 ~2001
2661628435323256879 ~1997
2661663595323327199 ~1997
2661715195323430399 ~1997
2661732835323465679 ~1997
2661783835323567679 ~1997
2661872035323744079 ~1997
Exponent Prime Factor Digits Year
2661979795323959599 ~1997
2662036435324072879 ~1997
2662141915324283839 ~1997
266228663638948791310 ~1999
2662330435324660879 ~1997
2662357795324715599 ~1997
2662378795324757599 ~1997
266238293159742975910 ~1998
2662563595325127199 ~1997
266271197213016957710 ~1998
266274079266274079110 ~1999
2662769932769280727311 ~2001
2662827715325655439 ~1997
2662850395325700799 ~1997
2662871395325742799 ~1997
2662925571278204273711 ~2000
2662974115325948239 ~1997
2662977715325955439 ~1997
2663119315326238639 ~1997
2663194915326389839 ~1997
2663200315326400639 ~1997
2663242431970799398311 ~2001
2663247595326495199 ~1997
266326339266326339110 ~1999
2663289115326578239 ~1997
Exponent Prime Factor Digits Year
2663439115326878239 ~1997
266349583266349583110 ~1999
266353651266353651110 ~1999
2663643595327287199 ~1997
266366021799098063110 ~2000
266386693159832015910 ~1998
266390717799172151110 ~2000
266397941159838764710 ~1998
2664004435328008879 ~1997
266404231426246769710 ~1999
266407811213126248910 ~1998
2664212471545243232711 ~2000
2664251995328503999 ~1997
2664290995328581999 ~1997
2664295195328590399 ~1997
266429623266429623110 ~1999
266452057159871234310 ~1998
2664526915329053839 ~1997
266453567213162853710 ~1998
2664571795329143599 ~1997
266463721159878232710 ~1998
2664637795329275599 ~1997
266488757213191005710 ~1998
2664924835329849679 ~1997
2664932635329865279 ~1997
Home
4.903.097 digits
e-mail
25-07-08