Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2665053835330107679 ~1997
2665280515330561039 ~1997
2665286515330573039 ~1997
2665305715330611439 ~1997
2665311235330622479 ~1997
2665345315330690639 ~1997
2665383235330766479 ~1997
266539081159923448710 ~1998
2665493995330987999 ~1997
2665502995331005999 ~1997
2665529995331059999 ~1997
2665551715331103439 ~1997
2665560715331121439 ~1997
2665617911066247164111 ~2000
2665830715331661439 ~1997
2665864315331728639 ~1997
266587907213270325710 ~1998
266588939213271151310 ~1998
2665901395331802799 ~1997
2665960195331920399 ~1997
2666187115332374239 ~1997
2666324515332649039 ~1997
2666366515332733039 ~1997
2666392915332785839 ~1997
2666437435332874879 ~1997
Exponent Prime Factor Digits Year
2666502835333005679 ~1997
2666526715333053439 ~1997
266655797159993478310 ~1998
2666637115333274239 ~1997
2666637835333275679 ~1997
2666704211866692947111 ~2001
266679317160007590310 ~1998
2666826595333653199 ~1997
2666909395333818799 ~1997
2666967235333934479 ~1997
2667022315334044639 ~1997
2667169915334339839 ~1997
266719553160031731910 ~1998
2667201835334403679 ~1997
2667218035334436079 ~1997
2667223315334446639 ~1997
2667248635334497279 ~1997
2667253315334506639 ~1997
266732231213385784910 ~1998
2667326635334653279 ~1997
2667400795334801599 ~1997
266744393160046635910 ~1998
266760407213408325710 ~1998
2667686995335373999 ~1997
2667789595335579199 ~1997
Exponent Prime Factor Digits Year
266789401160073640710 ~1998
2667901195335802399 ~1997
2667917995335835999 ~1997
2667954715335909439 ~1997
266799959480239926310 ~1999
2668094635336189279 ~1997
2668101115336202239 ~1997
2668159315336318639 ~1997
266816873373543622310 ~1999
2668280995336561999 ~1997
2668308595336617199 ~1997
266834591693769936710 ~2000
2668375315336750639 ~1997
266837999213470399310 ~1998
2668482715336965439 ~1997
2668571635337143279 ~1997
2668589395337178799 ~1997
266859787266859787110 ~1999
2668746835337493679 ~1997
2668843915337687839 ~1997
2668956835337913679 ~1997
2668976395337952799 ~1997
2669010235338020479 ~1997
2669029435338058879 ~1997
2669104435338208879 ~1997
Exponent Prime Factor Digits Year
2669128795338257599 ~1997
2669151715338303439 ~1997
266917199213533759310 ~1998
266919557160151734310 ~1998
2669202715338405439 ~1997
2669215795338431599 ~1997
2669241115338482239 ~1997
2669268115338536239 ~1997
2669369035338738079 ~1997
2669394115338788239 ~1997
266946397160167838310 ~1998
2669469235338938479 ~1997
2669487235338974479 ~1997
266949737213559789710 ~1998
2669510995339021999 ~1997
266955617213564493710 ~1998
266958689213566951310 ~1998
2669591635339183279 ~1997
266969617160181770310 ~1998
2669707792402737011111 ~2001
267013709213610967310 ~1998
2670221395340442799 ~1997
2670389035340778079 ~1997
267042709587493959910 ~1999
267043433160226059910 ~1998
Home
4.903.097 digits
e-mail
25-07-08