Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2947805995895611999 ~1997
294817333176890399910 ~1998
2948188315896376639 ~1997
2948197195896394399 ~1997
294831499530696698310 ~1999
2948368195896736399 ~1997
294838553412773974310 ~1999
2948511715897023439 ~1997
2948620915897241839 ~1997
294863953176918371910 ~1998
2948913235897826479 ~1997
2948960395897920799 ~1997
294896201235916960910 ~1999
294898529235918823310 ~1999
2949063235898126479 ~1997
2949068635898137279 ~1997
2949070435898140879 ~1997
294907637176944582310 ~1998
2949199915898399839 ~1997
2949273595898547199 ~1997
2949385195898770399 ~1997
2949443995898887999 ~1997
294945697176967418310 ~1998
2949603115899206239 ~1997
2949655818259036268111 ~2002
Exponent Prime Factor Digits Year
294969347235975477710 ~1999
294979961176987976710 ~1998
294982097235985677710 ~1999
2949923035899846079 ~1997
2949924132831927164911 ~2001
2949939835899879679 ~1997
294995161176997096710 ~1998
2949976211356989056711 ~2000
2949980515899961039 ~1997
295000037177000022310 ~1998
295003721236002976910 ~1999
295018303472029284910 ~1999
295021589413030224710 ~1999
2950263835900527679 ~1997
2950292395900584799 ~1997
2950421035900842079 ~1997
295053089236042471310 ~1999
295059673177035803910 ~1998
2950674115901348239 ~1997
2950685035901370079 ~1997
295069081177041448710 ~1998
295077017177046210310 ~1998
2950796395901592799 ~1997
2950884835901769679 ~1997
2950911835901823679 ~1997
Exponent Prime Factor Digits Year
295096097177057658310 ~1998
2950973995901947999 ~1997
2951094115902188239 ~1997
2951135035902270079 ~1997
2951266799975281750311 ~2003
295134373177080623910 ~1998
295145237236116189710 ~1999
295155893177093535910 ~1998
2951582635903165279 ~1997
2951616835903233679 ~1997
2951634835903269679 ~1997
2951699395903398799 ~1997
2951817595903635199 ~1997
295182359236145887310 ~1999
295185547295185547110 ~1999
2951997115903994239 ~1997
2952254995904509999 ~1997
2952276835904553679 ~1997
295232261177139356710 ~1998
2952346195904692399 ~1997
2952369715904739439 ~1997
29523875331885785324112 ~2004
295246841236197472910 ~1999
2952486715904973439 ~1997
295257401177154440710 ~1998
Exponent Prime Factor Digits Year
295260613472416980910 ~1999
295261721177157032710 ~1998
2952627115905254239 ~1997
295264423295264423110 ~1999
2952700915905401839 ~1997
2952743635905487279 ~1997
295276673177166003910 ~1998
2952819115905638239 ~1997
2952983035905966079 ~1997
2953022395906044799 ~1997
2953169995906339999 ~1997
295322119708773085710 ~2000
2953242835906485679 ~1997
2953259035906518079 ~1997
2953348435906696879 ~1997
2953392595906785199 ~1997
2953596115907192239 ~1997
2953648631181459452111 ~2000
2953993435907986879 ~1997
2953996915907993839 ~1997
2953999915907999839 ~1997
295411033472657652910 ~1999
2954164195908328399 ~1997
2954220595908441199 ~1997
2954256595908513199 ~1997
Home
4.903.097 digits
e-mail
25-07-08