Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1954612433909224879 ~1996
1954690313909380639 ~1996
195470173430034380710 ~1998
1954706993909413999 ~1996
195475153117285091910 ~1997
1954764233909528479 ~1996
195482701430061942310 ~1998
195482801156386240910 ~1997
1954876193909752399 ~1996
1954907033909814079 ~1996
195495967351892740710 ~1998
1954970633909941279 ~1996
195499363195499363110 ~1997
195499709273699592710 ~1998
1955030393910060799 ~1996
1955052233910104479 ~1996
1955061233910122479 ~1996
195509291156407432910 ~1997
1955106713910213439 ~1996
1955154713910309439 ~1996
195521423469251415310 ~1998
1955232833910465679 ~1996
1955254193910508399 ~1996
1955259713910519439 ~1996
1955288571055855827911 ~1999
Exponent Prime Factor Digits Year
1955333393910666799 ~1996
195538781156431024910 ~1997
1955420513910841039 ~1996
195550067508430174310 ~1998
195553117117331870310 ~1997
195557107312891371310 ~1998
1955578193911156399 ~1996
1955619593911239199 ~1996
1955639091056045108711 ~1999
1955678993911357999 ~1996
195572081117343248710 ~1997
195572477117343486310 ~1997
1955740913911481839 ~1996
1955767793911535599 ~1996
195577691352039843910 ~1998
195602747156482197710 ~1997
195604631156483704910 ~1997
1956057593912115199 ~1996
195609773117365863910 ~1997
1956100913912201839 ~1996
195616529156493223310 ~1997
195616907156493525710 ~1997
1956208913912417839 ~1996
195621883312995012910 ~1998
195622717117373630310 ~1997
Exponent Prime Factor Digits Year
195624617273874463910 ~1998
19562465912363478448912 ~2002
1956251513912503039 ~1996
195627217313003547310 ~1998
1956274793912549599 ~1996
195628331156502664910 ~1997
1956315113912630239 ~1996
195636061117381636710 ~1997
1956551393913102799 ~1996
1956553913913107839 ~1996
1956563993913127999 ~1996
1956632393913264799 ~1996
1956679913913359839 ~1996
195671251313074001710 ~1998
195675071156540056910 ~1997
1956759713913519439 ~1996
195676493117405895910 ~1997
1956797513913595039 ~1996
195679817273951743910 ~1998
1956802913913605839 ~1996
1956889313913778639 ~1996
195693313117415987910 ~1997
1956934193913868399 ~1996
1956997193913994399 ~1996
195702161156561728910 ~1997
Exponent Prime Factor Digits Year
1957028633914057279 ~1996
1957031993914063999 ~1996
1957076393914152799 ~1996
1957093313914186639 ~1996
1957160633914321279 ~1996
1957167713914335439 ~1996
195719053117431431910 ~1997
1957224593914449199 ~1996
1957225313914450639 ~1996
1957279793914559599 ~1996
1957310993914621999 ~1996
195738427352329168710 ~1998
1957390913914781839 ~1996
1957404833914809679 ~1996
1957451393914902799 ~1996
1957486433914972879 ~1996
1957488233914976479 ~1996
1957517393915034799 ~1996
1957605411213715354311 ~1999
1957637033915274079 ~1996
1957687313915374639 ~1996
1957697513915395039 ~1996
1957752713915505439 ~1996
1957787993915575999 ~1996
195781351195781351110 ~1997
Home
5.157.210 digits
e-mail
25-11-02