Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2176984194353968399 ~1996
217699121130619472710 ~1997
2177049114354098239 ~1996
2177092914354185839 ~1996
217711973130627183910 ~1997
2177120634354241279 ~1996
217715027174172021710 ~1998
2177160714354321439 ~1996
217724981174179984910 ~1998
2177309394354618799 ~1996
2177320194354640399 ~1996
2177367234354734479 ~1996
2177415714354831439 ~1996
2177459034354918079 ~1996
2177492994354985999 ~1996
2177595714355191439 ~1996
2177626914355253839 ~1996
2177676771219498991311 ~2000
217770307217770307110 ~1998
2177737194355474399 ~1996
2177766234355532479 ~1996
217781413130668847910 ~1997
2177817834355635679 ~1996
2177852994355705999 ~1996
2177857794355715599 ~1996
Exponent Prime Factor Digits Year
217787837174230269710 ~1998
2177922714355845439 ~1996
217793461653380383110 ~1999
2177947194355894399 ~1996
2177996514355993039 ~1996
217801301130680780710 ~1997
2178087714356175439 ~1996
2178100511568232367311 ~2000
2178189594356379199 ~1996
217822711348516337710 ~1998
2178231891742585512111 ~2000
2178279834356559679 ~1996
2178283434356566879 ~1996
2178370434356740879 ~1996
217838273304973582310 ~1998
2178414114356828239 ~1996
2178461034356922079 ~1996
217847501174278000910 ~1998
2178535794357071599 ~1996
2178544931524981451111 ~2000
217868159522883581710 ~1999
217868977130721386310 ~1997
2178722994357445999 ~1996
217872793479320144710 ~1999
2178748794357497599 ~1996
Exponent Prime Factor Digits Year
217877071348603313710 ~1998
2178786591045817563311 ~1999
2178831114357662239 ~1996
2178899994357799999 ~1996
217898951174319160910 ~1998
2179027914358055839 ~1996
217915007174332005710 ~1998
217916801174333440910 ~1998
2179169034358338079 ~1996
2179274994358549999 ~1996
2179327911743462328111 ~2000
2179364514358729039 ~1996
2179429794358859599 ~1996
217944401130766640710 ~1997
2179494114358988239 ~1996
2179521234359042479 ~1996
2179661394359322799 ~1996
217970713130782427910 ~1997
2179739634359479279 ~1996
217978261130786956710 ~1997
217979087523149808910 ~1999
217979753130787851910 ~1997
217983043217983043110 ~1998
2179856994359713999 ~1996
217991281130794768710 ~1997
Exponent Prime Factor Digits Year
2179990314359980639 ~1996
2180060514360121039 ~1996
2180080794360161599 ~1996
218020807218020807110 ~1998
2180228034360456079 ~1996
2180307234360614479 ~1996
2180411994360823999 ~1996
218043457348869531310 ~1998
218048801130829280710 ~1997
2180557914361115839 ~1996
218056243218056243110 ~1998
2180598714361197439 ~1996
218070371174456296910 ~1998
218072341130843404710 ~1997
2180727594361455199 ~1996
218078401130847040710 ~1997
2180794194361588399 ~1996
2180825634361651279 ~1996
218083757130850254310 ~1997
2180917194361834399 ~1996
2180942514361885039 ~1996
218094619218094619110 ~1998
2181004794362009599 ~1996
2181042234362084479 ~1996
2181061314362122639 ~1996
Home
4.903.097 digits
e-mail
25-07-08