Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
267494837213995869710 ~1998
267499391213999512910 ~1998
267505759267505759110 ~1999
267518021214014416910 ~1998
2675227435350454879 ~1997
2675258515350517039 ~1997
267530321160518192710 ~1998
2675332195350664399 ~1997
2675396635350793279 ~1997
2675443992354390711311 ~2001
2675653795351307599 ~1997
2675689435351378879 ~1997
2675699995351399999 ~1997
2675728915351457839 ~1997
267573107481631592710 ~1999
2675782435351564879 ~1997
2675810635351621279 ~1997
267584287642202288910 ~1999
267584621214067696910 ~1998
2675927395351854799 ~1997
267599609214079687310 ~1998
267601157642242776910 ~1999
267602417160561450310 ~1998
2676213115352426239 ~1997
2676237715352475439 ~1997
Exponent Prime Factor Digits Year
2676290395352580799 ~1997
2676508795353017599 ~1997
267662743267662743110 ~1999
2676635515353271039 ~1997
267667019481800634310 ~1999
267668237160600942310 ~1998
2676687595353375199 ~1997
2676726835353453679 ~1997
267675337160605202310 ~1998
2676761635353523279 ~1997
2676808372087910528711 ~2001
2676889013426417932911 ~2001
2676977995353955999 ~1997
2677147435354294879 ~1997
2677184035354368079 ~1997
2677220995354441999 ~1997
267731627481916928710 ~1999
267750811267750811110 ~1999
267757159267757159110 ~1999
267765587214212469710 ~1998
267767671267767671110 ~1999
2677682395355364799 ~1997
2677685635355371279 ~1997
2677828315355656639 ~1997
267786989214229591310 ~1998
Exponent Prime Factor Digits Year
2677954315355908639 ~1997
267808141160684884710 ~1998
2678098195356196399 ~1997
267817807642762736910 ~1999
2678205835356411679 ~1997
267823397160694038310 ~1998
2678285635356571279 ~1997
2678484595356969199 ~1997
2678634235357268479 ~1997
2678692195357384399 ~1997
2678855995357711999 ~1997
2678877771500171551311 ~2000
267890681160734408710 ~1998
2679213835358427679 ~1997
267927221214341776910 ~1998
2679314515358629039 ~1997
267932117160759270310 ~1998
267934837160760902310 ~1998
267935159214348127310 ~1998
2679357715358715439 ~1997
2679416035358832079 ~1997
2679510835359021679 ~1997
2679538315359076639 ~1997
2679553795359107599 ~1997
2679555595359111199 ~1997
Exponent Prime Factor Digits Year
26796986969189820175912 ~2004
2679847795359695599 ~1997
2679851995359703999 ~1997
2680007635360015279 ~1997
2680015795360031599 ~1997
2680058515360117039 ~1997
268013401160808040710 ~1998
2680139395360278799 ~1997
268014337160808602310 ~1998
2680144315360288639 ~1997
268022701160813620710 ~1998
2680228315360456639 ~1997
268038581160823148710 ~1998
2680396435360792879 ~1997
2680448515360897039 ~1997
2680495435360990879 ~1997
268090723268090723110 ~1999
268094353160856611910 ~1998
268096733160858039910 ~1998
268097197160858318310 ~1998
2681030515362061039 ~1997
268104719214483775310 ~1998
268111889643468533710 ~1999
268113941160868364710 ~1998
268121333160872799910 ~1998
Home
4.739.325 digits
e-mail
25-04-20