Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2669215795338431599 ~1997
2669241115338482239 ~1997
2669268115338536239 ~1997
2669369035338738079 ~1997
2669394115338788239 ~1997
266946397160167838310 ~1998
2669487235338974479 ~1997
266949737213559789710 ~1998
2669510995339021999 ~1997
266955617213564493710 ~1998
266958689213566951310 ~1998
2669591635339183279 ~1997
266969617160181770310 ~1998
2669707792402737011111 ~2001
267013709213610967310 ~1998
2670221395340442799 ~1997
2670389035340778079 ~1997
267042709587493959910 ~1999
267043433160226059910 ~1998
2670436915340873839 ~1997
2670491035340982079 ~1997
2670520811922774983311 ~2001
2670565795341131599 ~1997
2670585235341170479 ~1997
2670598435341196879 ~1997
Exponent Prime Factor Digits Year
2670952435341904879 ~1997
2671016515342033039 ~1997
267104857160262914310 ~1998
2671153795342307599 ~1997
2671206115342412239 ~1997
2671360915342721839 ~1997
2671486435342972879 ~1997
2671537915343075839 ~1997
2671547471068618988111 ~2000
267158581160295148710 ~1998
267160147480888264710 ~1999
267160447267160447110 ~1999
267170863641210071310 ~1999
267172379213737903310 ~1998
2671743115343486239 ~1997
2671835035343670079 ~1997
267186767213749413710 ~1998
267187441160312464710 ~1998
2671958395343916799 ~1997
2672032435344064879 ~1997
2672045995344091999 ~1997
2672098435344196879 ~1997
2672139235344278479 ~1997
2672155195344310399 ~1997
2672161435344322879 ~1997
Exponent Prime Factor Digits Year
2672239195344478399 ~1997
267225421427560673710 ~1999
267249511427599217710 ~1999
267252809213802247310 ~1998
267264689374170564710 ~1999
2672663995345327999 ~1997
2672736835345473679 ~1997
267275069374185096710 ~1999
2672795995345591999 ~1997
2672888395345776799 ~1997
2673075115346150239 ~1997
267314893160388935910 ~1998
267327817427724507310 ~1999
2673284035346568079 ~1997
2673294235346588479 ~1997
267331741588129830310 ~1999
2673342715346685439 ~1997
2673345595346691199 ~1997
2673360715346721439 ~1997
2673419395346838799 ~1997
2673536995347073999 ~1997
2673553915347107839 ~1997
2673567115347134239 ~1997
267368531213894824910 ~1998
2673701995347403999 ~1997
Exponent Prime Factor Digits Year
2673766195347532399 ~1997
267377801213902240910 ~1998
2673993235347986479 ~1997
267409531267409531110 ~1999
2674095595348191199 ~1997
2674163395348326799 ~1997
2674277035348554079 ~1997
2674318915348637839 ~1997
2674337035348674079 ~1997
2674369315348738639 ~1997
2674377193209252628111 ~2001
2674388635348777279 ~1997
2674407595348815199 ~1997
2674441795348883599 ~1997
2674473715348947439 ~1997
267451553374432174310 ~1999
2674621315349242639 ~1997
267464521160478712710 ~1998
2674680595349361199 ~1997
2674715515349431039 ~1997
2674740235349480479 ~1997
2674829035349658079 ~1997
2674843915349687839 ~1997
267487151213989720910 ~1998
2674878595349757199 ~1997
Home
4.739.325 digits
e-mail
25-04-20