Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2396958714793917439 ~1996
239697839191758271310 ~1998
2396983914793967839 ~1996
2396987034793974079 ~1996
239701433143820859910 ~1998
239701817191761453710 ~1998
2397022194794044399 ~1996
239706673143824003910 ~1998
2397073434794146879 ~1996
2397077034794154079 ~1996
2397089994794179999 ~1996
239716817191773453710 ~1998
2397209634794419279 ~1996
2397227394794454799 ~1996
239724553143834731910 ~1998
2397281994794563999 ~1996
2397294114794588239 ~1996
2397300594794601199 ~1996
2397342594794685199 ~1996
2397403314794806639 ~1996
239762443239762443110 ~1998
239762777143857666310 ~1998
239771369191817095310 ~1998
2397720234795440479 ~1996
239776417143865850310 ~1998
Exponent Prime Factor Digits Year
239776819431598274310 ~1999
2397866634795733279 ~1996
239788277191830621710 ~1998
239790037143874022310 ~1998
2397913794795827599 ~1996
2397958794795917599 ~1996
2397971994795943999 ~1996
2398140834796281679 ~1996
2398208634796417279 ~1996
239823173143893903910 ~1998
2398305834796611679 ~1996
2398457994796915999 ~1996
2398490634796981279 ~1996
2398536114797072239 ~1996
2398542114797084239 ~1996
2398543616524038619311 ~2002
239863579431754442310 ~1999
2398712394797424799 ~1996
2398732194797464399 ~1996
2398764714797529439 ~1996
2398913634797827279 ~1996
239899469575758725710 ~1999
239903953383846324910 ~1999
2399089194798178399 ~1996
239910101191928080910 ~1998
Exponent Prime Factor Digits Year
239914033383862452910 ~1999
2399236794798473599 ~1996
239926901143956140710 ~1998
2399440314798880639 ~1996
2399629914799259839 ~1996
2399710794799421599 ~1996
239972281143983368710 ~1998
2399763714799527439 ~1996
2399782434799564879 ~1996
2399802714799605439 ~1996
2399848914799697839 ~1996
2400047994800095999 ~1996
2400110994800221999 ~1996
2400123594800247199 ~1996
2400133914800267839 ~1996
2400145434800290879 ~1996
2400148434800296879 ~1996
2400339711008142678311 ~2000
2400437034800874079 ~1996
240047699576114477710 ~1999
2400478314800956639 ~1996
2400596394801192799 ~1996
240061937192049549710 ~1998
240066517384106427310 ~1999
240071761144043056710 ~1998
Exponent Prime Factor Digits Year
2400757914801515839 ~1996
2400795714801591439 ~1996
240083609192066887310 ~1998
2400950994801901999 ~1996
240105067432189120710 ~1999
2401199634802399279 ~1996
2401205994802411999 ~1996
2401234314802468639 ~1996
2401240194802480399 ~1996
2401242714802485439 ~1996
2401323114802646239 ~1996
2401437234802874479 ~1996
2401555794803111599 ~1996
240156601144093960710 ~1998
2401676994803353999 ~1996
2401699074226990363311 ~2001
2401712514803425039 ~1996
2401739034803478079 ~1996
240193147240193147110 ~1998
2401936194803872399 ~1996
2401955693650972648911 ~2001
2401972314803944639 ~1996
2402024634804049279 ~1996
2402040594804081199 ~1996
240210361384336577710 ~1999
Home
4.739.325 digits
e-mail
25-04-20