Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1848494033696988079 ~1996
1848532433697064879 ~1996
184855243776392020710 ~1999
1848637793697275599 ~1996
1848664433697328879 ~1996
184869497258817295910 ~1998
1848714113697428239 ~1996
1848723233697446479 ~1996
184873397110924038310 ~1997
1848748313697496639 ~1996
1848767393697534799 ~1996
1848847433697694879 ~1996
184884941110930964710 ~1997
1848859193697718399 ~1996
1848883913697767839 ~1996
184889083184889083110 ~1997
184889519443734845710 ~1998
1848953033697906079 ~1996
1848983033697966079 ~1996
1849007393698014799 ~1996
1849039313698078639 ~1996
1849041233698082479 ~1996
184906747295850795310 ~1998
184912531295860049710 ~1998
1849162193698324399 ~1996
Exponent Prime Factor Digits Year
184928747147942997710 ~1997
1849422233698844479 ~1996
1849449233698898479 ~1996
1849475513698951039 ~1996
1849488713698977439 ~1996
184951427147961141710 ~1997
1849631393699262799 ~1996
184964033110978419910 ~1997
1849645193699290399 ~1996
1849731113699462239 ~1996
1849744793699489599 ~1996
184974781110984868710 ~1997
184976863184976863110 ~1997
1849791113699582239 ~1996
1849806713699613439 ~1996
1849824113699648239 ~1996
184984337110990602310 ~1997
184986601110991960710 ~1997
1849866713699733439 ~1996
184989317110993590310 ~1997
1849897433699794879 ~1996
184992961295988737710 ~1998
184993801110996280710 ~1997
184997353406994176710 ~1998
1849977833699955679 ~1996
Exponent Prime Factor Digits Year
1850037713700075439 ~1996
1850082233700164479 ~1996
1850172713700345439 ~1996
1850188433700376879 ~1996
1850197433700394879 ~1996
1850204633700409279 ~1996
1850321633700643279 ~1996
185033803629114930310 ~1999
1850341913700683839 ~1996
1850453633700907279 ~1996
185047141111028284710 ~1997
1850488193700976399 ~1996
1850636993701273999 ~1996
1850658833701317679 ~1996
1850706371739663987911 ~2000
185073527333132348710 ~1998
185074741111044844710 ~1997
1850762993701525999 ~1996
1850796233701592479 ~1996
185082517111049510310 ~1997
1850825633701651279 ~1996
1850830913701661839 ~1996
1850931593701863199 ~1996
1850942633701885279 ~1996
185099969148079975310 ~1997
Exponent Prime Factor Digits Year
185105567333190020710 ~1998
185109181111065508710 ~1997
1851174233702348479 ~1996
1851187793702375599 ~1996
1851231113702462239 ~1996
1851257513702515039 ~1996
185138333259193666310 ~1998
185139011148111208910 ~1997
1851423713702847439 ~1996
1851442313702884639 ~1996
185147099777617815910 ~1999
1851541433703082879 ~1996
185159213259222898310 ~1998
1851619793703239599 ~1996
185163427296261483310 ~1998
185168429148134743310 ~1997
185169007629574623910 ~1999
185174263185174263110 ~1997
185176777296282843310 ~1998
1851807713703615439 ~1996
185183077111109846310 ~1997
185183351148146680910 ~1997
1851836111962946276711 ~2000
1851848033703696079 ~1996
1851848993703697999 ~1996
Home
5.157.210 digits
e-mail
25-11-02