Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2657921995315843999 ~1997
265803359212642687310 ~1998
265804351265804351110 ~1998
265806817637936360910 ~1999
265809613159485767910 ~1998
2658207595316415199 ~1997
2658332515316665039 ~1997
265839031478510255910 ~1999
265846877159508126310 ~1998
265849151212679320910 ~1998
2658504235317008479 ~1997
2658507715317015439 ~1997
2658522715317045439 ~1997
2658527395317054799 ~1997
2658610315317220639 ~1997
2658616195317232399 ~1997
2658626995317253999 ~1997
2658741115317482239 ~1997
2658765715317531439 ~1997
2658814315317628639 ~1997
2658937915317875839 ~1997
265894231265894231110 ~1998
265903633159542179910 ~1998
265914919265914919110 ~1998
2659262635318525279 ~1997
Exponent Prime Factor Digits Year
2659307995318615999 ~1997
2659351795318703599 ~1997
2659559515319119039 ~1997
2659700515319401039 ~1997
265977809372368932710 ~1999
2659797115319594239 ~1997
2659844515319689039 ~1997
2659939915319879839 ~1997
2660076115320152239 ~1997
2660138995320277999 ~1997
2660141635320283279 ~1997
2660154115320308239 ~1997
266016871266016871110 ~1998
2660271715320543439 ~1997
2660285995320571999 ~1997
2660318035320636079 ~1997
2660355595320711199 ~1997
2660401435320802879 ~1997
2660419915320839839 ~1997
2660497671489878695311 ~2000
2660500195321000399 ~1997
2660590915321181839 ~1997
266062267425699627310 ~1999
2660637715321275439 ~1997
2660641315321282639 ~1997
Exponent Prime Factor Digits Year
266065013159639007910 ~1998
2660655115321310239 ~1997
266071733372500426310 ~1999
2660723515321447039 ~1997
2660743315321486639 ~1997
2660761195321522399 ~1997
266078201159646920710 ~1998
266091521212873216910 ~1998
2660935195321870399 ~1997
2660937715321875439 ~1997
266107229212885783310 ~1998
2661228235322456479 ~1997
2661249835322499679 ~1997
2661294595322589199 ~1997
266129783691937435910 ~2000
2661336115322672239 ~1997
2661362035322724079 ~1997
2661378715322757439 ~1997
2661585674098841931911 ~2001
2661628435323256879 ~1997
2661663595323327199 ~1997
2661715195323430399 ~1997
2661732835323465679 ~1997
2661872035323744079 ~1997
2661979795323959599 ~1997
Exponent Prime Factor Digits Year
2662036435324072879 ~1997
2662141915324283839 ~1997
266228663638948791310 ~1999
2662330435324660879 ~1997
2662357795324715599 ~1997
2662378795324757599 ~1997
266238293159742975910 ~1998
2662563595325127199 ~1997
266271197213016957710 ~1998
266274079266274079110 ~1998
2662769932769280727311 ~2001
2662827715325655439 ~1997
2662850395325700799 ~1997
2662871395325742799 ~1997
2662925571278204273711 ~2000
2662974115325948239 ~1997
2662977715325955439 ~1997
2663119315326238639 ~1997
2663194915326389839 ~1997
2663200315326400639 ~1997
2663242431970799398311 ~2001
2663247595326495199 ~1997
266326339266326339110 ~1998
2663289115326578239 ~1997
2663439115326878239 ~1997
Home
4.739.325 digits
e-mail
25-04-20