Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1809672113619344239 ~1995
180968617108581170310 ~1997
1809694432063051650311 ~2000
180972677144778141710 ~1997
1809755633619511279 ~1995
180977231144781784910 ~1997
1809810713619621439 ~1995
1809909233619818479 ~1995
1809972593619945199 ~1995
1809983993619967999 ~1995
1810016033620032079 ~1995
1810036313620072639 ~1995
1810058993620117999 ~1995
181011893108607135910 ~1997
1810133633620267279 ~1995
1810161233620322479 ~1995
181017961108610776710 ~1997
1810246313620492639 ~1995
181027993108616795910 ~1997
1810330913620661839 ~1995
181033939760342543910 ~1999
181036577144829261710 ~1997
181037767325867980710 ~1998
181042481108625488710 ~1997
1810435433620870879 ~1995
Exponent Prime Factor Digits Year
181049087144839269710 ~1997
1810501793621003599 ~1995
1810529393621058799 ~1995
1810552433621104879 ~1995
181061597253486235910 ~1998
181065917253492283910 ~1998
1810676513621353039 ~1995
1810704233621408479 ~1995
181072861108643716710 ~1997
1810773113621546239 ~1995
181077979869174299310 ~1999
1810787393621574799 ~1995
1810825793621651599 ~1995
1810838633621677279 ~1995
181086443579476617710 ~1998
181087237108652342310 ~1997
181094477108656686310 ~1997
1810981433621962879 ~1995
1811005935179476959911 ~2001
181104491144883592910 ~1997
1811080793622161599 ~1995
1811087513622175039 ~1995
1811089433622178879 ~1995
1811155793622311599 ~1995
1811160593622321199 ~1995
Exponent Prime Factor Digits Year
181117877144894301710 ~1997
181118081108670848710 ~1997
1811215433622430879 ~1995
1811221913622443839 ~1995
181126987181126987110 ~1997
1811391113622782239 ~1995
1811424593622849199 ~1995
1811491193622982399 ~1995
181152073398534560710 ~1998
181152353108691411910 ~1997
1811539193623078399 ~1995
181157371760860958310 ~1999
181158077144926461710 ~1997
1811580833623161679 ~1995
1811581193623162399 ~1995
181161089253625524710 ~1998
1811678393623356799 ~1995
181169999144935999310 ~1997
181170809434809941710 ~1998
181188191144950552910 ~1997
1811883833623767679 ~1995
181200599326161078310 ~1998
1812015713624031439 ~1995
1812063593624127199 ~1995
181207111326172799910 ~1998
Exponent Prime Factor Digits Year
1812072233624144479 ~1995
1812168833624337679 ~1996
1812182393624364799 ~1996
1812261831449809464111 ~1999
1812264113624528239 ~1996
1812273833624547679 ~1996
181229677108737806310 ~1997
1812503513625007039 ~1996
181261231181261231110 ~1997
181265177145012141710 ~1997
181269073108761443910 ~1997
181272239906361195110 ~1999
1812733433625466879 ~1996
1812766433625532879 ~1996
1812784313625568639 ~1996
1812811433625622879 ~1996
181283077108769846310 ~1997
1812839513625679039 ~1996
1812856193625712399 ~1996
1812886433625772879 ~1996
181289861108773916710 ~1997
1812944993625889999 ~1996
1812955193625910399 ~1996
1813043393626086799 ~1996
1813055393626110799 ~1996
Home
5.157.210 digits
e-mail
25-11-02