Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1813078913626157839 ~1996
1813083713626167439 ~1996
1813103033626206079 ~1996
1813122233626244479 ~1996
181313683435152839310 ~1998
1813148033626296079 ~1996
1813168793626337599 ~1996
1813187993626375999 ~1996
1813194593626389199 ~1996
1813214033626428079 ~1996
1813227833626455679 ~1996
181322881398910338310 ~1998
181324721108794832710 ~1997
1813259993626519999 ~1996
1813318793626637599 ~1996
1813348193626696399 ~1996
1813371713626743439 ~1996
1813478513626957039 ~1996
181350901544052703110 ~1998
181353713253895198310 ~1998
1813560113627120239 ~1996
1813594433627188879 ~1996
181359863471535643910 ~1998
1813610393627220799 ~1996
1813671833627343679 ~1996
Exponent Prime Factor Digits Year
1813682513627365039 ~1996
1813683713627367439 ~1996
1813686591450949272111 ~1999
181371301108822780710 ~1997
1813725113627450239 ~1996
181373273253922582310 ~1998
1813751633627503279 ~1996
1813762313627524639 ~1996
1813794593627589199 ~1996
181382533399041572710 ~1998
1813873793627747599 ~1996
1813892513627785039 ~1996
181392773108835663910 ~1997
1813961993627923999 ~1996
181398221108838932710 ~1997
1814000993628001999 ~1996
181400749435361797710 ~1998
181406557108843934310 ~1997
1814066633628133279 ~1996
181417799145134239310 ~1997
1814210393628420799 ~1996
1814293313628586639 ~1996
1814348393628696799 ~1996
1814377793628755599 ~1996
1814398313628796639 ~1996
Exponent Prime Factor Digits Year
1814402993628805999 ~1996
181442057254018879910 ~1998
1814420993628841999 ~1996
181447807326606052710 ~1998
1814516033629032079 ~1996
1814537993629075999 ~1996
1814545433629090879 ~1996
1814560433629120879 ~1996
181457699145166159310 ~1997
181458457108875074310 ~1997
181461317108876790310 ~1997
1814633393629266799 ~1996
1814662313629324639 ~1996
1814769593629539199 ~1996
181481213254073698310 ~1998
1814840633629681279 ~1996
1814844233629688479 ~1996
1814865233629730479 ~1996
1814940113629880239 ~1996
181496827181496827110 ~1997
181499117108899470310 ~1997
1814991593629983199 ~1996
1815043313630086639 ~1996
1815043433630086879 ~1996
181505321108903192710 ~1997
Exponent Prime Factor Digits Year
1815055313630110639 ~1996
1815174113630348239 ~1996
181520147145216117710 ~1997
181522619871308571310 ~1999
181526159435662781710 ~1998
181531027617205491910 ~1999
1815345713630691439 ~1996
181536737254151431910 ~1998
1815405713630811439 ~1996
1815443993630887999 ~1996
181545061290472097710 ~1998
1815459713630919439 ~1996
1815464993630929999 ~1996
1815513233631026479 ~1996
181555739326800330310 ~1998
1815563393631126799 ~1996
1815588233631176479 ~1996
1815618833631237679 ~1996
1815647633631295279 ~1996
1815709793631419599 ~1996
181579213108947527910 ~1997
1815801833631603679 ~1996
181582957108949774310 ~1997
1815844793631689599 ~1996
1815855113631710239 ~1996
Home
5.157.210 digits
e-mail
25-11-02