Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
180579313541737939110 ~1998
1805812793611625599 ~1995
1805835833611671679 ~1995
1805871713611743439 ~1995
1805897513611795039 ~1995
180590587288944939310 ~1998
1805978033611956079 ~1995
180600631325081135910 ~1998
1806152033612304079 ~1995
1806227513612455039 ~1995
1806318833612637679 ~1995
180639509433534821710 ~1998
180644053108386431910 ~1997
1806455393612910799 ~1995
1806570833613141679 ~1995
1806659393613318799 ~1995
1806680633613361279 ~1995
180670093108402055910 ~1997
1806708593613417199 ~1995
1806762113613524239 ~1995
1806818633613637279 ~1995
1806836033613672079 ~1995
180687953108412771910 ~1997
1806885593613771199 ~1995
180699991180699991110 ~1997
Exponent Prime Factor Digits Year
1807000433614000879 ~1995
1807020233614040479 ~1995
1807029831192639687911 ~1999
180704141144563312910 ~1997
1807050713614101439 ~1995
1807091633614183279 ~1995
180712867289140587310 ~1998
1807161833614323679 ~1995
1807194713614389439 ~1995
180729551144583640910 ~1997
1807372793614745599 ~1995
1807384433614768879 ~1995
1807407233614814479 ~1995
1807420913614841839 ~1995
180742517108445510310 ~1997
180754793578415337710 ~1998
1807594433615188879 ~1995
1807606313615212639 ~1995
1807616993615233999 ~1995
1807638113615276239 ~1995
1807658033615316079 ~1995
1807672433615344879 ~1995
180771971144617576910 ~1997
180781639180781639110 ~1997
1807875593615751199 ~1995
Exponent Prime Factor Digits Year
180789569976263672710 ~1999
180791069144632855310 ~1997
1807920713615841439 ~1995
180800647723202588110 ~1999
180807661108484596710 ~1997
180810139325458250310 ~1998
180812917108487750310 ~1997
180813613433952671310 ~1998
1808280713616561439 ~1995
180829637108497782310 ~1997
1808340113616680239 ~1995
1808433593616867199 ~1995
180853537108512122310 ~1997
1808542913617085839 ~1995
180860777253205087910 ~1998
180862867180862867110 ~1997
1808654033617308079 ~1995
1808658713617317439 ~1995
180867173108520303910 ~1997
1808690633617381279 ~1995
1808698793617397599 ~1995
1808719793617439599 ~1995
1808761193617522399 ~1995
1808769593617539199 ~1995
1808812313617624639 ~1995
Exponent Prime Factor Digits Year
1808838233617676479 ~1995
1808853113617706239 ~1995
180886781144709424910 ~1997
180891149144712919310 ~1997
1808923193617846399 ~1995
1808944913617889839 ~1995
1808967833617935679 ~1995
180899107289438571310 ~1998
1809051113618102239 ~1995
1809121913618243839 ~1995
1809142913618285839 ~1995
1809173393618346799 ~1995
180918121289468993710 ~1998
1809206993618413999 ~1995
180922433108553459910 ~1997
1809224993618449999 ~1995
1809282113618564239 ~1995
180929117108557470310 ~1997
180930131144744104910 ~1997
180932417144745933710 ~1997
180939433108563659910 ~1997
1809506033619012079 ~1995
1809510593619021199 ~1995
1809600833365857543911 ~2000
1809669113619338239 ~1995
Home
5.157.210 digits
e-mail
25-11-02