Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2590993435181986879 ~1997
2591025835182051679 ~1997
2591080795182161599 ~1997
2591164195182328399 ~1997
259121747207297397710 ~1998
2591308435182616879 ~1997
259130917155478550310 ~1998
2591315035182630079 ~1997
2591321995182643999 ~1997
2591424595182849199 ~1997
2591448835182897679 ~1997
2591591395183182799 ~1997
259159627414655403310 ~1999
2591612395183224799 ~1997
2591637115183274239 ~1997
2591677315183354639 ~1997
2592088795184177599 ~1997
259209707207367765710 ~1998
2592112795184225599 ~1997
2592120595184241199 ~1997
2592368995184737999 ~1997
259237751207390200910 ~1998
2592405115184810239 ~1997
2592440035184880079 ~1997
2592468595184937199 ~1997
Exponent Prime Factor Digits Year
2592609835185219679 ~1997
2592632395185264799 ~1997
2592668635185337279 ~1997
2592756715185513439 ~1997
2592774235185548479 ~1997
2592813595185627199 ~1997
2592838315185676639 ~1997
259292387466726296710 ~1999
2592930595185861199 ~1997
259295833155577499910 ~1998
259298357622316056910 ~1999
2592991915185983839 ~1997
259300147259300147110 ~1998
259304627207443701710 ~1998
2593105435186210879 ~1997
2593114915186229839 ~1997
2593134235186268479 ~1997
2593209616794209178311 ~2002
2593241515186483039 ~1997
2593535515187071039 ~1997
2593637395187274799 ~1997
2593651915187303839 ~1997
259368917363116483910 ~1999
259368959207495167310 ~1998
2593735915187471839 ~1997
Exponent Prime Factor Digits Year
2593783315187566639 ~1997
2593799035187598079 ~1997
2593824115187648239 ~1997
2593830115187660239 ~1997
2593849915187699839 ~1997
2593936195187872399 ~1997
2593939435187878879 ~1997
259403917155642350310 ~1998
2594117035188234079 ~1997
2594147391297073695111 ~2000
2594150035188300079 ~1997
259418519207534815310 ~1998
2594240515188481039 ~1997
259426991674510176710 ~1999
259431197778293591110 ~2000
259431527207545221710 ~1998
2594350315188700639 ~1997
2594352715188705439 ~1997
259437637155662582310 ~1998
259448821415118113710 ~1999
259457189363240064710 ~1999
2594581494722138311911 ~2002
259461641155676984710 ~1998
259462337207569869710 ~1998
2594633271245423969711 ~2000
Exponent Prime Factor Digits Year
2594674795189349599 ~1997
2594775835189551679 ~1997
2594785915189571839 ~1997
2594787595189575199 ~1997
2594789515189579039 ~1997
259479091259479091110 ~1998
2594886115189772239 ~1997
2594898235189796479 ~1997
2594925115189850239 ~1997
2595034795190069599 ~1997
259508239882328012710 ~2000
2595084235190168479 ~1997
259526537155715922310 ~1998
2595286795190573599 ~1997
2595505195191010399 ~1997
259552193155731315910 ~1998
2595547315191094639 ~1997
259561121207648896910 ~1998
2595677515191355039 ~1997
2595748915191497839 ~1997
2595795595191591199 ~1997
259600267259600267110 ~1998
2596060195192120399 ~1997
2596183435192366879 ~1997
2596205635192411279 ~1997
Home
4.739.325 digits
e-mail
25-04-20