Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
173371591173371591110 ~1997
1733720993467441999 ~1995
1733722913467445839 ~1995
173374087173374087110 ~1997
1733882633467765279 ~1995
173390641104034384710 ~1997
1733910593467821199 ~1995
1733920313467840639 ~1995
1733981033467962079 ~1995
173405977104043586310 ~1997
1734082433468164879 ~1995
173412611450872788710 ~1998
1734150833468301679 ~1995
173415353104049211910 ~1997
1734183593468367199 ~1995
1734188033468376079 ~1995
173419633104051779910 ~1997
1734296033468592079 ~1995
173431421138745136910 ~1997
173431831693727324110 ~1999
1734346193468692399 ~1995
1734415913468831839 ~1995
1734447233468894479 ~1995
1734535433469070879 ~1995
1734581393469162799 ~1995
Exponent Prime Factor Digits Year
1734658193469316399 ~1995
1734667433469334879 ~1995
173467901104080740710 ~1997
1734690833469381679 ~1995
173469551312245191910 ~1998
1734702593469405199 ~1995
173478101104086860710 ~1997
173478497104087098310 ~1997
173481809138785447310 ~1997
1734865913469731839 ~1995
1734870593469741199 ~1995
1734887513469775039 ~1995
1734893633469787279 ~1995
1734946793469893599 ~1995
1735024193470048399 ~1995
1735066913470133839 ~1995
1735070513470141039 ~1995
1735071233470142479 ~1995
1735129193470258399 ~1995
173514449138811559310 ~1997
173520133104112079910 ~1997
1735220993470441999 ~1995
173530457138824365710 ~1997
1735324313470648639 ~1995
173535491312363883910 ~1998
Exponent Prime Factor Digits Year
173541653104124991910 ~1997
1735426793470853599 ~1995
173549681659488787910 ~1998
1735510433471020879 ~1995
173553851555372323310 ~1998
1735543193471086399 ~1995
173556637277690619310 ~1998
173557177104134306310 ~1997
1735627313471254639 ~1995
173563009416551221710 ~1998
1735664393471328799 ~1995
1735671833471343679 ~1995
1735721033471442079 ~1995
173573161104143896710 ~1997
1735733633471467279 ~1995
173573461277717537710 ~1998
1735757831839903299911 ~2000
1735803593471607199 ~1995
173585887173585887110 ~1997
173587573104152543910 ~1997
1735924032083108836111 ~2000
173595509138876407310 ~1997
1736013713472027439 ~1995
173601577104160946310 ~1997
173604331173604331110 ~1997
Exponent Prime Factor Digits Year
173607053104164231910 ~1997
1736084993472169999 ~1995
173609173104165503910 ~1997
1736181833472363679 ~1995
173620831173620831110 ~1997
173627591138902072910 ~1997
173628283416707879310 ~1998
173629013104177407910 ~1997
173634233104180539910 ~1997
173637481104182488710 ~1997
173641541104184924710 ~1997
173649653104189791910 ~1997
1736501993473003999 ~1995
173651791173651791110 ~1997
1736541713473083439 ~1995
173654171138923336910
173654599173654599110 ~1997
1736613593473227199 ~1995
173662141104197284710 ~1997
173664677138931741710 ~1997
1736648633473297279 ~1995
173666357104199814310 ~1997
173669641521008923110 ~1998
1736752793473505599 ~1995
1736849633473699279 ~1995
Home
4.903.097 digits
e-mail
25-07-08