Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1730548793461097599 ~1995
1730551193461102399 ~1995
1730579393461158799 ~1995
173058673103835203910 ~1996
1730603393461206799 ~1995
173062313103837387910 ~1996
17306633919418043235912 ~2002
1730690513461381039 ~1995
173070701103842420710 ~1996
1730723633461447279 ~1995
173072407588446183910 ~1998
1730734193461468399 ~1995
1730741513461483039 ~1995
173075101380765222310 ~1998
1730832713461665439 ~1995
173084371173084371110 ~1997
1730958833461917679 ~1995
173098117103858870310 ~1996
1731057593462115199 ~1995
173106187276969899310 ~1998
1731074633462149279 ~1995
1731112313462224639 ~1995
173113531173113531110 ~1997
1731194513462389039 ~1995
1731201593462403199 ~1995
Exponent Prime Factor Digits Year
1731293993462587999 ~1995
1731294713462589439 ~1995
173130967311635740710 ~1998
173131531311636755910 ~1998
1731377993462755999 ~1995
173138417138510733710 ~1997
1731419393462838799 ~1995
173145941103887564710 ~1997
1731467633462935279 ~1995
1731483593462967199 ~1995
173150261138520208910 ~1997
173150801138520640910 ~1997
1731514793463029599 ~1995
1731518993463037999 ~1995
1731543233463086479 ~1995
173158031138526424910 ~1997
1731623033463246079 ~1995
173162417138529933710 ~1997
173163337103898002310 ~1997
1731645593463291199 ~1995
1731726833463453679 ~1995
1731734993463469999 ~1995
1731763692459104439911 ~2000
173176559138541247310 ~1997
1731797033463594079 ~1995
Exponent Prime Factor Digits Year
173181731311727115910 ~1998
1731822714191010958311 ~2000
1731888593463777199 ~1995
173194121103916472710 ~1997
1731950633463901279 ~1995
173195119173195119110 ~1997
173198021103918812710 ~1997
1732006793464013599 ~1995
1732008833464017679 ~1995
1732058393464116799 ~1995
1732142633464285279 ~1995
1732169993464339999 ~1995
173225341103935204710 ~1997
173229187173229187110 ~1997
1732365593464731199 ~1995
173240267970145495310 ~1999
1732465193464930399 ~1995
1732485713464971439 ~1995
1732556393465112799 ~1995
1732573793465147599 ~1995
1732708193465416399 ~1995
173277823173277823110 ~1997
173278667311901600710 ~1998
1732797833465595679 ~1995
173282443693129772110 ~1999
Exponent Prime Factor Digits Year
1732828071143666526311 ~1999
1732897313465794639 ~1995
173298361277277377710 ~1998
1733019593466039199 ~1995
1733050433466100879 ~1995
173305427138644341710 ~1997
173311139311960050310 ~1998
173315689415957653710 ~1998
1733178713466357439 ~1995
1733267393466534799 ~1995
1733302433466604879 ~1995
1733328233466656479 ~1995
173333669138666935310 ~1997
1733345993466691999 ~1995
1733359313466718639 ~1995
1733385593466771199 ~1995
1733397233466794479 ~1995
173343733104006239910 ~1997
1733438513466877039 ~1995
173352373104011423910 ~1997
173352581104011548710 ~1997
1733549393467098799 ~1995
173360261138688208910 ~1997
1733644913467289839 ~1995
1733665193467330399 ~1995
Home
4.903.097 digits
e-mail
25-07-08