Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
173689283451592135910 ~1998
173694463173694463110 ~1997
1737018233474036479 ~1995
1737043433474086879 ~1995
1737044513474089039 ~1995
1737082913474165839 ~1995
1737140393474280799 ~1995
1737157793474315599 ~1995
1737168113474336239 ~1995
173717833938076298310 ~1999
1737208433474416879 ~1995
1737251993474503999 ~1995
1737325433474650879 ~1995
1737356033474712079 ~1995
1737398513474797039 ~1995
1737505193475010399 ~1995
173750957104250574310 ~1997
173752961139002368910 ~1997
173753743590762726310 ~1998
1737563513475127039 ~1995
1737582233475164479 ~1995
1737594833475189679 ~1995
1737619433475238879 ~1995
173762053104257231910 ~1997
1737624833475249679 ~1995
Exponent Prime Factor Digits Year
1737665393475330799 ~1995
173766829938340876710 ~1999
1737684113475368239 ~1995
1737707393475414799 ~1995
173772773556072873710 ~1998
173773331139018664910 ~1997
1737759113475518239 ~1995
1737810593475621199 ~1995
1737888593475777199 ~1995
173789519139031615310 ~1997
173790527312822948710 ~1998
1737906713475813439 ~1995
1737939233475878479 ~1995
1737941393475882799 ~1995
1738004633476009279 ~1995
1738004993476009999 ~1995
1738044833476089679 ~1995
1738078913476157839 ~1995
1738160633476321279 ~1995
1738239113476478239 ~1995
1738240433476480879 ~1995
173826971139061576910 ~1997
1738318313476636639 ~1995
1738337393476674799 ~1995
1738387793476775599 ~1995
Exponent Prime Factor Digits Year
173846417660616384710 ~1998
1738483193476966399 ~1995
1738519331112652371311 ~1999
1738538633477077279 ~1995
1738544033477088079 ~1995
1738604513477209039 ~1995
173861801139089440910 ~1997
1738646993477293999 ~1995
173881993104329195910 ~1997
173892353104335411910 ~1997
1738930631147694215911 ~1999
1738932833477865679 ~1995
1738945433477890879 ~1995
1738955033477910079 ~1995
1738961393477922799 ~1995
173897231139117784910 ~1997
173897953278236724910 ~1998
1739045471112989100911 ~1999
1739135393478270799 ~1995
173916007278265611310 ~1998
173920121104352072710 ~1997
173923219173923219110 ~1997
1739287193478574399 ~1995
1739324393478648799 ~1995
1739335313478670639 ~1995
Exponent Prime Factor Digits Year
1739391593478783199 ~1995
1739461913478923839 ~1995
1739478113478956239 ~1995
1739486393478972799 ~1995
1739501513479003039 ~1995
1739519513479039039 ~1995
173956513104373907910 ~1997
173957681104374608710 ~1997
173958973104375383910 ~1997
1739671913479343839 ~1995
1739677193479354399 ~1995
173971271139177016910 ~1997
1739762513479525039 ~1995
1739819033479638079 ~1995
1739822993479645999 ~1995
173984513104390707910 ~1997
1739855513479711039 ~1995
1739868593479737199 ~1995
1739948513479897039 ~1995
173996701382792742310 ~1998
1740111713480223439 ~1995
1740135833480271679 ~1995
1740138113480276239 ~1995
1740161632505832747311 ~2000
1740205793480411599 ~1995
Home
4.903.097 digits
e-mail
25-07-08