Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1990836233981672479 ~1996
199091077915818954310 ~1999
1990968233981936479 ~1996
199102663318564260910 ~1998
1991053313982106639 ~1996
1991056313982112639 ~1996
199109971318575953710 ~1998
1991125913982251839 ~1996
1991198393982396799 ~1996
199120391159296312910 ~1997
199125637119475382310 ~1997
1991261393982522799 ~1996
1991272313982544639 ~1996
199128673438083080710 ~1998
1991307593982615199 ~1996
1991309033982618079 ~1996
1991326913982653839 ~1996
199133533119480119910 ~1997
199135009477924021710 ~1998
1991355113982710239 ~1996
1991406713982813439 ~1996
1991469713982939439 ~1996
1991528393983056799 ~1996
199153909438138599910 ~1998
199159997278823995910 ~1998
Exponent Prime Factor Digits Year
199162079159329663310 ~1997
199164811199164811110 ~1998
1991678033983356079 ~1996
1991731793983463599 ~1996
1991734313983468639 ~1996
1991755793983511599 ~1996
199179691318687505710 ~1998
1991816633983633279 ~1996
1991849393983698799 ~1996
1991914913983829839 ~1996
1991915393983830799 ~1996
1991945033983890079 ~1996
199197287159357829710 ~1997
1992067193984134399 ~1996
1992098633984197279 ~1996
1992182633984365279 ~1996
199222217119533330310 ~1997
1992239033984478079 ~1996
199224107517982678310 ~1999
1992247313984494639 ~1996
1992280193984560399 ~1996
199229417119537650310 ~1997
1992327233984654479 ~1996
1992354833984709679 ~1996
1992358913984717839 ~1996
Exponent Prime Factor Digits Year
1992412913984825839 ~1996
1992435713984871439 ~1996
1992438131394706691111 ~2000
199246937159397549710 ~1997
1992503513985007039 ~1996
1992530033985060079 ~1996
1992534593985069199 ~1996
1992570833985141679 ~1996
199263313438379288710 ~1998
1992672833985345679 ~1996
1992702833985405679 ~1996
1992836633985673279 ~1996
1992879113985758239 ~1996
1992946313985892639 ~1996
1992973793985947599 ~1996
1992979793985959599 ~1996
199307249159445799310 ~1997
1993087433986174879 ~1996
1993123913986247839 ~1996
199312483199312483110 ~1998
199315733279042026310 ~1998
1993187993986375999 ~1996
199334753119600851910 ~1997
1993362833986725679 ~1996
199336637279071291910 ~1998
Exponent Prime Factor Digits Year
199340789159472631310 ~1997
1993440833986881679 ~1996
199346053598038159110 ~1999
1993507313987014639 ~1996
1993530833987061679 ~1996
1993559393987118799 ~1996
1993581471913838211311 ~2000
1993581713987163439 ~1996
1993636793987273599 ~1996
1993636913987273839 ~1996
1993666313987332639 ~1996
199367869598103607110 ~1999
199368641119621184710 ~1997
199376693279127370310 ~1998
199377551159502040910 ~1997
1993777913987555839 ~1996
1993789193987578399 ~1996
1993836233987672479 ~1996
199393759199393759110 ~1998
1993939193987878399 ~1996
1993971233987942479 ~1996
199397287319035659310 ~1998
1993987913987975839 ~1996
199400017119640010310 ~1997
1994001113988002239 ~1996
Home
4.739.325 digits
e-mail
25-04-20