Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1843014593686029199 ~1996
1843057913686115839 ~1996
1843070033686140079 ~1996
1843172513686345039 ~1996
1843185593686371199 ~1996
1843212713686425439 ~1996
1843212833686425679 ~1996
1843290593686581199 ~1996
1843294793686589599 ~1996
1843335593686671199 ~1996
1843362593686725199 ~1996
1843418513686837039 ~1996
184345361110607216710 ~1997
1843546193687092399 ~1996
184357157110614294310 ~1997
1843602713687205439 ~1996
1843621793687243599 ~1996
1843662713687325439 ~1996
1843750913687501839 ~1996
1843869713687739439 ~1996
1844066993688133999 ~1996
184408603295053764910 ~1998
1844131913688263839 ~1996
1844186033688372079 ~1996
1844260313688520639 ~1996
Exponent Prime Factor Digits Year
1844307233688614479 ~1996
184431053110658631910 ~1997
184432579331978642310 ~1998
1844327633688655279 ~1996
1844352113688704239 ~1996
1844491433688982879 ~1996
184459013442701631310 ~1998
184462609553387827110 ~1998
1844630033689260079 ~1996
184465363184465363110 ~1997
1844676113689352239 ~1996
1844797193689594399 ~1996
1844800313689600639 ~1996
1844844113689688239 ~1996
184491193110694715910 ~1997
1844974793689949599 ~1996
1845034193690068399 ~1996
184503877110702326310 ~1997
184504547885621825710 ~1999
1845067193690134399 ~1996
1845082793690165599 ~1996
1845138593690277199 ~1996
1845148313690296639 ~1996
184516901110710140710 ~1997
1845173513690347039 ~1996
Exponent Prime Factor Digits Year
1845179513690359039 ~1996
184518197258325475910 ~1998
1845264113690528239 ~1996
1845267593690535199 ~1996
184528697147622957710 ~1997
1845290993690581999 ~1996
184531883442876519310 ~1998
1845354233690708479 ~1996
1845385313690770639 ~1996
1845476513690953039 ~1996
184548473110729083910 ~1997
184549051738196204110 ~1999
184550141110730084710 ~1997
1845502313691004639 ~1996
184558151332204671910 ~1998
1845600593691201199 ~1996
1845694193691388399 ~1996
184571417110742850310 ~1997
1845727433691454879 ~1996
1845737033691474079 ~1996
1845761633691523279 ~1996
184576739147661391310 ~1997
184579729442991349710 ~1998
184582373110749423910 ~1997
1845870833691741679 ~1996
Exponent Prime Factor Digits Year
1845924233691848479 ~1996
1845924833691849679 ~1996
1845950393691900799 ~1996
184595737110757442310 ~1997
184597183443033239310 ~1998
184602421110761452710 ~1997
1846042433692084879 ~1996
1846052033692104079 ~1996
184608659332295586310 ~1998
1846116833692233679 ~1996
184611781110767068710 ~1997
1846162193692324399 ~1996
1846163033692326079 ~1996
1846170113692340239 ~1996
184617581147694064910 ~1997
1846185593692371199 ~1996
184625849147700679310 ~1997
1846268633692537279 ~1996
1846270313692540639 ~1996
184632397110779438310 ~1997
1846375433692750879 ~1996
1846413713692827439 ~1996
1846454513692909039 ~1996
184647847184647847110 ~1997
1846524113693048239 ~1996
Home
4.739.325 digits
e-mail
25-04-20